Do Existing FAIRNESS Measures Suffice?
Assessing Discrimination in Algorithmic Decision-Making

Yijun BIAN

Department of Computer Science
University of Copenhagen

27 August 2025

yjbian92@hotmail.com D3A MLT workshop



Background group-criteria  individual

AI/ML is everywhere now
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Level 3 blocks

Social identity biases exist not only in human psychology and social behaviour, but also are present in
artificial intelligence (AI) systems.!

When humans and Al interact, even minute perceptual, emotional and social biases>—originating either from

Al systems or humans—Ileave human beliefs more biased, potentially forming a feedback loop.>

1Ziad Obermeyer et al. “Dissecting racial bias in an algorithm used to manage the health of populations”. In: Science 366.6464 (2019), pp. 447-453.
DOI: 10.1126/science.aax2342; Tiancheng Hu et al. “Generative language models exhibit social identity biases”. In: Naf Comput Sci (2024),
pp. 1-11; Richard ] Chen et al. “Algorithmic fairness in artificial intelligence for medicine and healthcare”. In: Naf Biomed Eng 7.6 (2023), pp. 719-742.

2 Are Skeie Hermansen et al. “Immigrant-native pay gap driven by lack of access to high-paying jobs”. In: Nature (2025), pp. 1-7.

3Moshe Glickman and Tali Sharot. “How human-Al feedback loops alter human perceptual, emotional and social judgements”. In: Nat Hun Belao 9
(2025), pp. 345-359. DOI: 10.1038/541562-024-02077~2; Madalina Vlasceanu and David M Amodio. “Propagation of societal gender inequality by
internet search algorithms”. In: Proc Natl Acad Sci L1.5.A. 119.29 (2022), €2204529119.
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Existing work about fairness

Many sources of bias*

Mechanisms to enhance fairness’
r=-=—--=-- Fairess Measures (used in) - - - - - 1
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Pre-processing In-processing Post-processing

Mechanism 'T‘ype

4Unintential: Limited and coarse features, sample size disparity (less data by definition about minority populations), skewed sample (feedback
loops), tainted examples, features that act as proxies; Intentional: conscious prejudice.

5Pre- and post-processing mechanisms normally function by manipulating input or output, while inprocessing mechanisms introduce fairness
constraints into training procedures or algorithmic objectives.
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Existing work about fairness

Many sources of bias

Mechanisms to enhance fairness
Types of fairness measures °

009000

Group faimess e

- Individual Raimess

Challenging: incompatibﬂity,6 multi-attribute protection, etc.

4Distributive fairness: group fairness, individual fairness, counterfactual fairness, etc.; Procedural fairness
5Group fairness focuses on statistical /demographic equality among groups defined by sensitive attributes, while individual fairness follows a principle
that “similar individuals should be evaluated or treated similarly.”

6Tensions between notions of fairness, between fairness and accuracy, between different methods for achieving fairness
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Three statistical non-discrimination criteria

Statistical non-discrimination criteria are
properties of the joint distribution of a sensitive attribute (SA, aka. protected attribute) A, target
variable y, the classifier f(-) or score R, sometimes including features X.

The three key criteria’ are:

Q independence Random variables (A, R) satisfy independence if A L R
© separation Random variables (R, A,Y) satisfy separationif R L A |Y
Q sufficiency Random variables (R, A,Y) satisfy sufficiency if Y 1L A | R

These criteria are rarely satisfied all at once, except in degenerate cases.®

7In essence, the latter two require the same recall or precision for each group, respectively.

8Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Limitations and opportunities. Cambridge, MA, USA: MIT Press,
2023; Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning. fairmlbook.org, 2019; Reuben Binns. “Fairness in machine
learning: Lessons from political philosophy”. In: FAT. PMLR. 2018, pp. 149-159.
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#1 Independence

Random variables (A, R) satisfy independence if A L R

#1 statistical non-discrimination criterion

Demographic parity (DP),” aka. statistical parity!”

P(f(tm)=1] o —0) = P(f(m) =1] o =1). M

9Pratik Gajane and Mykola Pechenizkiy. “On formalizing fairness in prediction with machine learning”. In: FAT/ML. 2018; Ray Jiang et al.
“Wasserstein fair classification”. In: LIAL PMLR. 2020, pp. 862-872.

10Cynthia Dwork et al. “Fairness through awareness”. In: ITCS. ITCS "12. Cambridge, Massachusetts: ACM, 2012, pp. 214-226. 1SBN: 9781450311151;
Alexandra Chouldechova. “Fair prediction with disparate impact: A study of bias in recidivism prediction instruments”. In: Big Data 5.2 (2017),
pp- 153-163.
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#1 Independence

Disparate impact (i.e., “80% rule”):!! the larger the better

P(f(%,a1) =1]a =0) u
PfEa) =1a=T) <T=08. @)
Disparate treatment!?
P(f(%,a1) =1[a) = P(f(¥,a1) = 1), a1 € {0,1} . ®)

It is also indicated as “statistical parity (SP)” in the literature, 13 that is,

]P(f(y“c,al) =1 | a =j ) = ]P(f(i,ﬂl) = 1), Vie Ay = {1,2,...,11”1}.

"Michael Feldman et al. “Certifying and removing disparate impact”. In: SIGKDD. 2015, pp. 259-268; Muhammad Bilal Zafar et al. “Fairness
beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment”. In: WWIWW. 2017, pp. 1171-1180.

127afar et al,, see n. 11; Christian Haas. “The price of fairness - A framework to explore trade-offs in algorithmic fairness”. In: ICIS. Association for
Information Systems. 2019.

13Haas, see n. 12; Sam Corbett-Davies et al. “Algorithmic decision making and the cost of fairness”. In: SIGKDD. New York, NY, USA: ACM, 2017,
pp. 797-806. 1SBN: 9781450348874; Alekh Agarwal, Miroslav Dudik, and Zhiwei Steven Wu. “Fair regression: Quantitative definitions and
reduction-based algorithms”. In: ICML. vol. 97. PMLR. 2019, pp. 120-129.

@hotmail.com D3A MLT workshop



Background group-criteria individual

#2 Separation

Random variables (R, A,Y) satisfy separationif R L A | Y

#2 statistical non-discrimination criterion

Equalised odds (EO)'*

]P(f(i/al) =1 ‘ a =0, y) = ]P(f(iral) =1 | a = 11y)' ye {011}' 4)

Equality of opportunity (EOpp, or EO),'” aka. treatment equality'®

]P(f(i'ral):1| a1:0,y:1):]lj(f(5c,a1):1| alzlfyzl)' ®)

14Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of opportunity in supervised learning”. In: NIPS. vol. 29. Red Hook, NY, USA, 2016,
pp. 3323-3331; Haas, see n. 12.

15Hardt, Price, and Srebro, see n. 14; Gajane and Pechenizkiy, see n. 9; Haas, see n. 12.
16Richard Berk et al. “Fairness in criminal justice risk assessments: The state of the art”. In: Sociol Methods Res 50.1 (2021), pp. 3-44.
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#3 Sufficiency

Random variables (R, A, Y) satisfy sufficiency if Y 1L A | R

#3 statistical non-discrimination criterion

Predictive parity (PP)”

Ply=1| a1 =0,f(%a1)=1)=Py=1| m=1,f(%mn)=1). (6)
Calibration?® (concept). For two binary predictors hy, hy : R T [0,1], hy classifies samples with a; =1
and hy does samples with 2 =0. Any I (t € {1,0}) is perfectly calibrated if
Vp € [0,1], Py =) (v =1 [ le(X,m1) = p) =p.

It intuitively prevents the probability scores from carrying group-specific information.

17Chouldechova, see n. 10; Sahil Verma and Julia Rubin. “Fairness definitions explained”. In: FairWare. 2018, pp. 1-7.

18Geoff Pleiss et al. “On fairness and calibration”. In: NIPS. vol. 30. 2017; Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. “Inherent
trade-offs in the fair determination of risk scores”. In: ITCS. 2017.
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Individual fairness

Lipschitz condition?-20

A mapping/predictor i: X x A; = X' x{0,1} — [0, 1] satisfies the A-Lipschitz property if for any
(%,a1), (¥',ay),
dy(h(%,a1) h(¥, 1)) <A-de( () , (¥, a1)), )
where dy, and d are (task-specific) distance metrics. Note that A is a positive constant.
It can also be written as the probability Lipschitzness, i.e., IP (M > 6) < J;orthe (e —§)

d (), (¥ a)))
language formulation: dy((¥,a1), (¥,4})) < e = dy(h(¥,a1),h(¥,a})) <, wheree > 0and 6 > 0.

In essence, individual fairness follows the principle that “similar individuals should be evaluated or treated
similarly.” A careful choice of distance metrics is crucial in ensuring fairness.!

“Dwork et al., see n. 10.

20 Additionally, a predictor satisfies individual fairness (Gajane and Pechenizkiy, see n. 9) iff: h(¥,a1) ~ h(¥,a}) | dx((¥,m1), (¥,a})) ~ 0, where
X, 2 XxAand d, : X, x X, — R is a distance metric for individuals.

2IBinh Thanh Luong, Salvatore Ruggieri, and Franco Turini. “k-NN as an implementation of situation testing for discrimination discovery and
prevention”. In: SIGKDD. 2011, pp. 502-510; Laura Boeschoten et al. “Achieving fair inference using error-prone outcomes”. In: Inf | Interact Multimed
Artif Intell 6.5 (2021).
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Individual fairness

General entropy indices?” and the Theil index??

For a constant & ¢ {0,1}, the generalised entropy indices for a problem with n instances are defined, to

quantify algorithmic unfairness, as
1 n b 4
Bl = —— ) -1
oo~ = 5 () ~1)- ?

where benefits b; = f(¥;,a1;) —y; + 1 and u = Libi/n.

The Theil index is a special case for « = 1, that is,
n . .
Theil = 1Z:&log (h> . )
n3H M

They are used additionally to group fairness measures to compare different algorithms and determine which
one is considered the fairest from an individual perspective.

27i]l Speicher et al. “A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices”. In:
SIGKDD. 2018, pp. 2239-2248.
2Haas, see n. 12.
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Individual fairness

Example/Illustration: s Ar
Low school success wole  black ¢ T ()

1. Computing unobserved variables in causal model

college GPA
2. Change 4 (that is, sensitive attribute(s))
3. Recompute observed variables in causal model
classifier
race hat{Y3(G.L)
knowledge
As Ar < o G L Y v
male  white ¢ ¢

sex

Ist year
loaw grade

As Ar o' GLar o] Ldr —a] Yidr <] Ylar <a]

male  white

Counterfactual fairness?* (definition). A predictor Y is counterfactually fair if given observations X = ¥
and A = awe have that, P(Ya. , =y | X =%,A=a) =P(Ya oy =y | X =% A =na), forallyand a’ # a.
Proxy discrimination ?°. A predictor Y exhibits no individual proxy discrimination based on a proxy P if for
allp,p’, wehave P(Y | do(P = p))=P(Y | do(P = p’)), where do(P = p) denotes an intervention on P.

24Matt ] Kusner et al. “Counterfactual fairness”. In: NIPS. vol. 30. NIPS Proceedings. 2017, pp. 4069-4079.
25(Niki Kilbertus et al. “Avoiding discrimination through causal reasoning”. In: NIPS. vol. 30. 2017) Visually, intervening on P amounts to removing
all incoming arrows of P in the graph; algebraically, it consists of replacing the structural equation of P by P = p, i.e. we put point mass on the value p.
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Brief summary

Table 1: Summary of existing fairness measures.

Name of measure Fairness type! Meaning ‘ Applicable situation(s) in definition ‘ Non-binary handling*
quant.” fairer | #label (n;) #sen-att (1,)° #values per A; | 1g,>2 Ny > 1
Demographic parity (aka. statistical parity) *, group- yes lower value binary singular bi-valued yes indirectly
Disparate impact /80% rule *, group- yes larger value binary singular bi-valued yes indirectly
Disparate treatment *, group- poss.  lower value binary singular bi- (multi- allowed) yes indirectly
Conditional statistical parity *, group- poss.  lower value binary singular multi-valued — indirectly
Bounded group loss *, group- poss.  lower value binary singular multi-valued — indirectly
Strategic minimax fairness *, group- bi-/multi- singular multi-valued — indirectly
Equalised odds *, group- lower value binary singular bi-valued yes indirectly
Equality of opportunity *, group- lower value binary singular bi-valued yes indirectly
Predictive equality *, group- poss.  lower value binary singular multi-valued = indirectly
y-subgroup fairness *, group- yes lower value binary singular bi-valued yes indirectly
Predictive parity *, group- yes lower value binary singular bi-valued yes indirectly
Lipschitz condition | *, individual- binary singular bi-valued yes indirectly
General entropy indices (and the Theil index) | *, individual- lower value binary singular multi-valued = indirectly
Counterfactual fairness | *, individual- binary allows plural multi- allowed yes indirectly
Proxy discrimination | *, individual- binary singular multi- allowed yes indirectly
Discriminative risk26 *, lower value | bi-/multi- | allows plural multi-valued — —
Harmonic fairness via manifold?” %5 lower value | bi-/multi- | allows plural multi-valued — —
Multiaccuracy *,group- poss.  lower value binary singular multi-valued — indirectly
Differentially fair *,group- poss. b« binary allows plural = bi- (multi- allowed) yes indirectly
Group benefit ratio and worst-case min-max ratio *,group- yes larger value binary allows plural  bi- (multi- allowed) yes indirectly
Feature-apriori fairness procedural yes — binary 5 g yes yes
Feature-accuracy fairness procedural yes — binary — — yes yes
Feature-disparity fairness procedural yes E— binary — — yes yes
FAE-based procedural fairness procedural yes lower value binary singular bi-valued yes indirectly

26Yijun Bian and Kun Zhang. “Increasing fairness via combination with learning guarantees”. In: arXiv preprint arXiv:2301.10813 (2023). Under
review.

27Yijun Bian and Yujie Luo. “Does machine bring in extra bias in learning? Approximating fairness in models promptly”. In: arXiv preprint
arXiv:2405.09251 (2024). Under review; Yijun Bian, Yujie Luo, and Ping Xu. “Approximating discrimination within models when faced with several

non-binary sensitive attributes”. In: arXiv preprint arXiv:2408.06099 (2024). Under review.




Challenges binarization inefficiency trade-off inc

Binarisation underestimates discrimination

Statistical parity (SP)?8
A predictor h satisfies statistical parity under a distribution over (X, A,Y) if h(x) is independent of the
protected attribute a. Since h(x) € [0, 1], this is equivalent to

P(f(¥,a1) 2z | ;=) ) =P(f(¥,a1) > z) (10)

forallje Ay ={1,2,..,n, }and z € [0,1].

Demographic parity (DP)  [P(f(¥,a1) =1|a # 1) —P(f(%a1) =1|a; =1)|<e

DP’s extension and alternative? form

max P(f(%,a1) =1 a1 =) —P(f(%,a1) =1)], (11a)
1
j,kg?;;#klﬂ’(f(i,al) =1[m =))=P(f(¥a1) =1]a =k)|. (11b)

28Corbett-Davies et al., see n. 13; Agarwal, Dudik, and Wu, see n. 13.
Jiang et al., see n. 9.
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binarization inefficiency

Binarisation underestimates discrimination

Demographic parity (DP) IP(f(%a1) =1]a; #1)—=P(f(¥,a) =1]a =1)] <¢
Equality of opportunity (EOpp) |P(f(¥%,a1) =1 #1L,y=1)-P(f(%m)=1|ay =1Ly=1)| <e
Predictive parity (PP) Ply=1|m #1Lf(%a)=1)—-Ply=1|m =1f(%,a)=1)| <¢

Three statistical non-discrimination criteria

EOpp’s extension and alternative form

;relaXIIP(f(x a) =1]a =j,y=1)-P(f(x,m) =1]y=1)|, (10a)
1

[P(f(%,a1) =101 =j,y=1)—-PFf&Em) =10 =k y=1)|. (10b)
JkeA J#

PP’s extension and alternative form

?eliXIH’ =1|o =) fEm)=1)-Ply=1[f(%a)=1), (11a)
1
j,keAl,j;ék“P(y =1 ‘ a1 = j,f(y‘c,al) = 1) — ]P(y =1 | a = k,f(i‘,lll) = 1)| g (11b)
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Challenges binarization inefficiency trade-o:

Binarisation underestimates discrimination
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Figure 1: Comparison of three commonly used group fairness measures and their extensions, on Income,
Compas PPR, and Compas PPVR datasets.

(a—b) Comparison between binarisation and the two extension forms, analogously to Eq. (11a) and (11b); note
that binarisation is equivalent to their original definitions like (1). (c-d) Comparison between binarisation and
their corresponding average forms. (e) Comparison between binarisation and all four extension formulas.
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Challenges binarization inefficiency trade-off incompatible

Binarisation underestimates discrimination

DP DP DP
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Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Income dataset. (a—e) Using bagging, AdaBoost, LightGBM, AdaFair (trained using
#1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Challenges

binarization inefficiency

Binarisation underestimates discrimination

trade-off
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Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Compas PPR dataset. (a—e) Using bagging, AdaBoost, LightGBM, AdaFair (trained
using #1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Challenges binarization inefficiency trade-off incompatible

Binarisation underestimates discrimination

DP DP DP
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dfprey EOpp —— O

ext
alt

dfpe EOpp —— o
— alt

PP dfprey PP

GEI (a=0.5) GEI (a=0.5) GEI (a=0.5)
Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Compas PPVR dataset. (a—e) Using bagging, AdaBoost, LightGBM, AdaFair (trained
using #1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Challenges binarization inefficiency trade-off incompatible

Traversal-based generalisation incurs computational burdens

3 10p 14
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Figure 2: Time cost comparison of three commonly used group fairness measures and their extension forms,

on Income, Compas PPR, and Compas PPVR datasets.

(a—b) Time cost comparison at different scales, and note that this is only for one 5- or 6-valued SA. Obviously,
degenerating intersectional attributes (A = A x A, = Z"™1 x Z"2 where ny,,, 14, >2) into one “super” discrete SA through
preprocessing is not an efficient way: It may be practical when both ,, and n,, are small enough, yet the computational
cost increases exponentially as these values grow (e.g., if 1, =2 and n,, changes from 2 to 6, A’ transitions from Z* to Z1?).
(c—d) Time cost comparisons, including individual fairness measures that are suitable for one multi-valued

SA, indicate that individual fairness has an even heavier computational burden.
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Challenges binarization inefficiency trade-off incompatible

Traversal-based generalisation incurs computational burdens
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Figure 2: Time cost comparison of HFM for binary-value and multi-value cases, on Income, Compas PPR,
and Compas PPVR datasets.

(a—b) Time cost comparisons of direct computation. (c—d) Comparisons including approximated results.?’

28Bjan and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
29Bjan and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Challenges binarization inefficiency trade-off incompatible

Accuracy and fairness are not strictly incompatible
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Figure 3: Scatter plot between performance (accuracy) and fairness. Note that on the y-axis, the smaller the
better; on the x-axis, the larger the better. (a) Using three commonly used group fairness measures; (b) Using
their first extension forms; (c) Using their second extension forms; (d) Using individual fairness measures.
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Challenges binarization inefficiency trade-off incompatible

Individual- and group- fairness are not inherently incompatible

~ DP Correlation = 0.5249 « EOpp Correlation = 0.6608 « PP Comelation = -0.0252
4 DP™ Correlation = 0.4106 . EOpp®™  Correlation = 0.2802 . PPt Correlation = 0.3251
DP?"  Correlation = 0.5023 EOpp®*  Correlation = 0.3639 PP Correlation = 0.3304

« DPX@W9) Correlation = 0.6106 « EOppe"#%9) Correlation = 0.4970 * PPertev9) Correlation = 0.1461
+ EOpp?@9 Correlation = 0.3757 + PP¥9) Correlation = 0.3648

+ DP?t9) Correlation = 0.5137

(b)

Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a—c)
Using the Theil index as the individual fairness.
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Challenges binarization inefficiency trade-off incompatible

Individual- and group- fairness are not inherently incompatible

+ DP Correlation = 0.5680  EOpp Correlation = 0.6496 “ PP Correlation = -0.0901
4 DPt Correlation = 0.5742 . EOpp®™  Correlation = 0.4658 4+ PPt Correlation = 0.3170
Pt Correlation = 0.6224 EOpp®  Correlation = 0.5524 PP Correlation = 0.3685

« DPX(¥9) Correlation = 0.6747 « EOppE"a9) Correlation = 0.5911 * PPertlavd) Correlation = 0.0695
+ DPtav9) Correlation = 0.6490 + EOpp™ @) Correlation = 05492 + PPt2va) Correlation = 0.3912

(b)

Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a—c)
Using DR as the individual fairness.
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Challenges binarization inefficiency trade-off incompatible

Individual- and group- fairness are not inherently incompatible
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a—c)
Using the previous HFM3! as the individual fairness.

30Bian and Luo, see n. 27.
3bid.
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a—c)
Using the maximum HFM3! as the individual fairness.

30Bian, Luo, and Xu, see n. 27.
3bid.
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Other distributive fairness

Fairness through unawareness>?

A predictor is said to achieve fairness through unawareness (FTU) (or unconscious/unaware fairness) if all
protected attributes A are excluded from the decision-making process.
Despite its compelling simplicity, this approach has a clear shortcoming: the remaining attributes X may

contain discriminatory information analogous to .A that may not be obvious at first, acting as proxy attributes.
As a result, discrimination cannot be guaranteed to be eliminated.

Discriminative risk (DR)33

DR(f) = E[I(f(¥,a) # f(¥,a))], (12)
where a is a perturbed a, and n; > 1, | A;| > 2 (i € [n,]).

Harmonic fairness via manifold (HFM)3* (three versions, see below)

32Dwork et al., see n. 10; Nina Grgic¢-Hlaca et al. “The case for process fairness in learning: Feature selection for fair decision making”. In: NIPS
symposiun on machine learning and the law. Vol. 1. 2. Barcelona, Spain. 2016, p. 11; Kusner et al., see n. 24; Gajane and Pechenizkiy, see n. 9.

33Bian and Zhang, see n. 26.

34Bian and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Other distributive fairness

Harmonic fairness via manifold (HFM)32

Given a dataset D = (X, A,Y), it has three versions: (1) the previous HFM for one bi-valued SA, and (2) the
maximal (resp. average) HFM for several multi-valued SAs.

For one bi-valued SA a; € A; = {0,1}, D is divided into Dy = {(%,,y) = (¥,a1,y) € D | a; = 1} and
Dy = D\ Dy, then given a specific distance metric d(-, -) (e.g., the standard Euclidean metric), the previous

HFM is ( )
8r(D1, Dy
df =-————1, 12
o) = S5 5 (12)
where
Dq,D1;9) =max{ max min d((% i), (¥,§ max_ min d((%), (¥,i7))},
g (D1, Dyig) = max{ max  min d((59),(¢,) max  min d((59),(£,9)

and g;(D1,D1) = g.(D1, D1;f(%,41)), §(D1,D1) = g.(D1, D1;y) are two abbreviations for brevity.

32Bjan and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Other distributive fairness

Harmonic fairness via manifold (HFM) (cont.)

For one or more multi-valued SAs a € A where n, > 1 and |A;] > 2 (i € [n,]), the maximal (resp. average)

HFM are
gfu(D)
df = lo d , 12a
8 ( $.(D) )
an
8f.a (D)
df*'s (f) = log av ’ (12b)
82 °(D)
where
8.4(D;¥) = maxigicn, 8. 4(D,ai;§) , (13a)
avg( ij) = nla Y 8 (D,ai i), (13b)
(D ai; 3/) maxze[nu ]{max (%ay)€D; mln(x y')eD d(( y)’ (i,ry/))}r
(D, ai ) = *Z]e [1a,] 1 X y)€D; min y ' )€D; a((x,), (&)

Note that D; = {(¥;,y) € D|a; =]}, D;=D\Dj, and special case g. ,(D,a;;j}) =g.(D1,D1; ) when A;={0,1}.
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Procedural fairness

Here we use D to denote the set of all instances/members (or queried users of
society), and S the set of all possible features that might be used in the decision-
making process (in other words, |S| <1y + 1,). Given a set of features S, let f
denote the classifier that uses those features S'.

Feature-apriori fairness. For a given feature s € S, let D; C D denote the set of all members that consider the
feature s fair to use without a priori knowledge of how its usage affects outcomes. Then

|ﬂs€ 4 DS;l
PFapr(fS’) £ % . (14)

Feature-accuracy fairness. (sce below)
Feature-disparity fairness. (see below)

These three measures®? accommodate scenarios with multiple SAs, each potentially having multiple values.

Despite this advantage, they rely heavily on features and on a set of members/users who perceive these features as fair,
which may still introduce hidden discrimination or human prejudice. Moreover, their computation is complex and
time-consuming, as user judgments may evolve with learning, limiting their practical applicability.

32Grgi¢-Hlada et al., “The case for process fairness in learning: Feature selection for fair decision making”, see n. 32; Nina Grgi¢-Hlaca et al. “Beyond
distributive fairness in algorithmic decision making: Feature selection for procedurally fair learning”. In: AAAL vol. 32. 1. 2018.
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Procedural fairness

Feature-accuracy fairness. Let D3 C D denote the set of all members that consider the feature s fair to be use
if it increases the accuracy of the classifier. Note that typically Ds C D3 is expected, though this need not always
hold exactly (due to either noise in estimating member preferences, or some members attaching some sort of

negative connotation to the notion of accuracy). Then

[ Ns,esr Cond(Ds,, D)
PFacc (fS’) 2 S D] — (14)

where o) Forion)
D;, if acc(fsr) < acc(fyr ;
acc) __ 5/ S S S'\{si} /)

COl’ld(Dsi, Dsi ) - {Dsi U D;*fC = D?fc, otherwise .

Feature-disparity fairness. (cf. Appendices) Let DSiSP C D denote the set of all members that consider the feature
s fair to use even if it increases a measure of disparity (i.e., disparate impact or disparate mistreatment) of the
classifier. Typically DSISP C D;s is expected, though this need not always hold strictly due to estimation error
or other reasons. Let disp(fs) denote the disparity it induces, and then

| N esr Cond (D, D)
PFdisp (fS/) £ = D] ’ (15)

where
. dis| . . "
Cond(Ds,-,DdlsP) = {D‘“’ P, ifdisp(fy) > disp(fy(s));

) > ;
S Ds, D5, = Dy, otherwise.
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Procedural fairness

Additionally,®? proposed an FAE-based (feature attribution explanation) metric to assess group procedural
fairness, which depends on the specific FAE techniques employed.

FAE-based group procedural fairness. A given dataset D is divided into two subsets by the values of a single
SA, thatis, D1 = {(x;,a1;,y;) € D | my; = 1} and Dy = {(x;,a1;,y;) € D | a3; = 0}. A local FAE function g(-)
takes a model f(-) and an explained data point (x;, a1;) as inputs and returns explanations (i.e., feature
importance scores) e; = g(f, x;,a1;) € R™ +1, where its j-th component e;; is the importance score of the feature
x;; for the model’s prediction f(x;,a1;). For a distance measure d, (-, -) between two sets of FAE explanation
results E7 and E,, then

GPFpAg = de(Eq, E2);
Ey = {e; | e = g(f, xi,a1), (xi,a1;) € D}, (14)
E> = {ej | ej = g(f, xj,a1), (xj,a1;) € Dy},

where D and D) are sets of n data points from D; and D;, respectively, generated by [its Algorithm 1].

32Ziming Wang, Changwu Huang, and Xin Yao. “Procedural fairness in machine learning”. In: arXiv preprint arXiv:2404.01877 (2024).
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