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AI/ML is everywhere now

Social identity biases exist not only in human psychology and social behaviour, but also are present in
artificial intelligence (AI) systems.1

When humans and AI interact, even minute perceptual, emotional and social biases2—originating either from
AI systems or humans—leave human beliefs more biased, potentially forming a feedback loop.3

1Ziad Obermeyer et al. “Dissecting racial bias in an algorithm used to manage the health of populations”. In: Science 366.6464 (2019), pp. 447–453.
DOI: 10.1126/science.aax2342; Tiancheng Hu et al. “Generative language models exhibit social identity biases”. In: Nat Comput Sci (2024),
pp. 1–11; Richard J Chen et al. “Algorithmic fairness in artificial intelligence for medicine and healthcare”. In: Nat Biomed Eng 7.6 (2023), pp. 719–742.

2Are Skeie Hermansen et al. “Immigrant–native pay gap driven by lack of access to high-paying jobs”. In: Nature (2025), pp. 1–7.
3Moshe Glickman and Tali Sharot. “How human-AI feedback loops alter human perceptual, emotional and social judgements”. In: Nat Hum Behav 9

(2025), pp. 345–359. DOI: 10.1038/s41562-024-02077-2; Madalina Vlasceanu and David M Amodio. “Propagation of societal gender inequality by
internet search algorithms”. In: Proc Natl Acad Sci U.S.A. 119.29 (2022), e2204529119.
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Existing work about fairness

Many sources of bias 4

Mechanisms to enhance fairness 5

Types of fairness measures

Challenging: incompatibility, multi-attribute protection, etc.

4Unintential: Limited and coarse features, sample size disparity (less data by definition about minority populations), skewed sample (feedback
loops), tainted examples, features that act as proxies; Intentional: conscious prejudice.

5Pre- and post-processing mechanisms normally function by manipulating input or output, while inprocessing mechanisms introduce fairness
constraints into training procedures or algorithmic objectives.
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Existing work about fairness

Many sources of bias

Mechanisms to enhance fairness
Types of fairness measures 4,5

Challenging: incompatibility,6 multi-attribute protection, etc.

4Distributive fairness: group fairness, individual fairness, counterfactual fairness, etc.; Procedural fairness
5Group fairness focuses on statistical/demographic equality among groups defined by sensitive attributes, while individual fairness follows a principle

that “similar individuals should be evaluated or treated similarly.”

6Tensions between notions of fairness, between fairness and accuracy, between different methods for achieving fairness
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Three statistical non-discrimination criteria

Statistical non-discrimination criteria are
properties of the joint distribution of a sensitive attribute (SA, aka. protected attribute) A, target
variable y, the classifier f (·) or score R, sometimes including features X.

The three key criteria7 are:
1 independence Random variables (A,R) satisfy independence if A ⊥⊥ R

2 separation Random variables (R,A,Y) satisfy separation if R ⊥⊥ A | Y
3 sufficiency Random variables (R,A,Y) satisfy sufficiency if Y ⊥⊥ A | R

These criteria are rarely satisfied all at once, except in degenerate cases.8

7In essence, the latter two require the same recall or precision for each group, respectively.
8Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Limitations and opportunities. Cambridge, MA, USA: MIT Press,

2023; Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning. fairmlbook.org, 2019; Reuben Binns. “Fairness in machine
learning: Lessons from political philosophy”. In: FAT. PMLR. 2018, pp. 149–159.
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#1 Independence

Random variables (A,R) satisfy independence if A ⊥⊥ R

#1 statistical non-discrimination criterion

♣

Demographic parity (DP),9 aka. statistical parity10

P(f (x̆, a1) = 1 | a1 = 0 ) = P(f (x̆, a1) = 1 | a1 = 1 ) . (1)

9Pratik Gajane and Mykola Pechenizkiy. “On formalizing fairness in prediction with machine learning”. In: FAT/ML. 2018; Ray Jiang et al.
“Wasserstein fair classification”. In: UAI. PMLR. 2020, pp. 862–872.

10Cynthia Dwork et al. “Fairness through awareness”. In: ITCS. ITCS ’12. Cambridge, Massachusetts: ACM, 2012, pp. 214–226. ISBN: 9781450311151;
Alexandra Chouldechova. “Fair prediction with disparate impact: A study of bias in recidivism prediction instruments”. In: Big Data 5.2 (2017),
pp. 153–163.
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#1 Independence

Disparate impact (i.e., “80% rule”):11 the larger the better

P(f (x̆, a1) = 1 | a1 = 0)
P(f (x̆, a1) = 1 | a1 = 1)

⩽ τ = 0.8 . (2)

Disparate treatment12

P(f (x̆, a1) = 1 | a1) = P(f (x̆, a1) = 1) , a1 ∈ {0, 1} . (3)

It is also indicated as “statistical parity (SP)” in the literature,13 that is,

P(f (x̆, a1) = 1 | a1 = j ) = P(f (x̆, a1) = 1) , ∀j ∈ A1 = {1, 2, ..., na1} .

11Michael Feldman et al. “Certifying and removing disparate impact”. In: SIGKDD. 2015, pp. 259–268; Muhammad Bilal Zafar et al. “Fairness
beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment”. In: WWW. 2017, pp. 1171–1180.

12Zafar et al., see n. 11; Christian Haas. “The price of fairness - A framework to explore trade-offs in algorithmic fairness”. In: ICIS. Association for
Information Systems. 2019.

13Haas, see n. 12; Sam Corbett-Davies et al. “Algorithmic decision making and the cost of fairness”. In: SIGKDD. New York, NY, USA: ACM, 2017,
pp. 797–806. ISBN: 9781450348874; Alekh Agarwal, Miroslav Dudı́k, and Zhiwei Steven Wu. “Fair regression: Quantitative definitions and
reduction-based algorithms”. In: ICML. vol. 97. PMLR. 2019, pp. 120–129.
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#2 Separation

Random variables (R,A,Y) satisfy separation if R ⊥⊥ A | Y

#2 statistical non-discrimination criterion

♣

Equalised odds (EO)14

P(f (x̆, a1) = 1 | a1 = 0, y) = P(f (x̆, a1) = 1 | a1 = 1, y) , y ∈ {0, 1} . (4)

Equality of opportunity (EOpp, or EO),15 aka. treatment equality16

P(f (x̆, a1) = 1 | a1 = 0 , y = 1) = P(f (x̆, a1) = 1 | a1 = 1 , y = 1) . (5)

14Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of opportunity in supervised learning”. In: NIPS. vol. 29. Red Hook, NY, USA, 2016,
pp. 3323–3331; Haas, see n. 12.

15Hardt, Price, and Srebro, see n. 14; Gajane and Pechenizkiy, see n. 9; Haas, see n. 12.
16Richard Berk et al. “Fairness in criminal justice risk assessments: The state of the art”. In: Sociol Methods Res 50.1 (2021), pp. 3–44.
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#3 Sufficiency

Random variables (R,A,Y) satisfy sufficiency if Y ⊥⊥ A | R

#3 statistical non-discrimination criterion

♣

Predictive parity (PP)17

P(y = 1 | a1 = 0 , f (x̆, a1) = 1) = P(y = 1 | a1 = 1 , f (x̆, a1) = 1) . (6)

Calibration18 (concept). For two binary predictors h1, h0 : Rnd+1 7→ [0, 1], h1 classifies samples with a1 =1
and h0 does samples with a1 =0. Any ht (t ∈ {1, 0}) is perfectly calibrated if

∀p ∈ [0, 1], P(x̆, ai=t, y)(y = 1 | ht(x̆, a1) = p) = p .

It intuitively prevents the probability scores from carrying group-specific information.

17Chouldechova, see n. 10; Sahil Verma and Julia Rubin. “Fairness definitions explained”. In: FairWare. 2018, pp. 1–7.
18Geoff Pleiss et al. “On fairness and calibration”. In: NIPS. vol. 30. 2017; Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. “Inherent

trade-offs in the fair determination of risk scores”. In: ITCS. 2017.
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Individual fairness

Lipschitz condition19,20

A mapping/predictor h : X ×A1 = X×{0, 1} 7→ [0, 1] satisfies the λ-Lipschitz property if for any
(x̆, a1), (x̆′, a′1),

dy( h(x̆, a1) , h(x̆′, a′1)) ⩽ λ · dx( (x̆, a1) , (x̆′, a′1)) , (7)

where dy and dx are (task-specific) distance metrics. Note that λ is a positive constant.

It can also be written as the probability Lipschitzness, i.e., P
(

dy(h(x̆,a1),h(x̆′ ,a′1))
dx((x̆,a1),(x̆′ ,a′1))

⩾ ϵ
)
⩽ δ ; or the (ϵ− δ)

language formulation: dx((x̆, a1), (x̆′, a′1)) ⩽ ϵ⇒ dy(h(x̆, a1), h(x̆′, a′1)) ⩽ δ , where ϵ ⩾ 0 and δ ⩾ 0.

In essence, individual fairness follows the principle that “similar individuals should be evaluated or treated
similarly.” A careful choice of distance metrics is crucial in ensuring fairness.21

19Dwork et al., see n. 10.
20Additionally, a predictor satisfies individual fairness (Gajane and Pechenizkiy, see n. 9) iff: h(x̆, a1) ≈ h(x̆′ , a′1) | dx((x̆, a1), (x̆′ , a′1)) ≈ 0, where
Xa ≜ X×A and dx : Xa ×Xa 7→ R is a distance metric for individuals.

21Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. “k-NN as an implementation of situation testing for discrimination discovery and
prevention”. In: SIGKDD. 2011, pp. 502–510; Laura Boeschoten et al. “Achieving fair inference using error-prone outcomes”. In: Int J Interact Multimed
Artif Intell 6.5 (2021).
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Individual fairness

General entropy indices22 and the Theil index23

For a constant α /∈ {0, 1}, the generalised entropy indices for a problem with n instances are defined, to
quantify algorithmic unfairness, as

GEIα =
1

nα(α− 1)

n

∑
i=1

((
bi
µ

)α

− 1
)

, (8)

where benefits bi = f (x̆i, a1i)− yi + 1 and µ = ∑i bi/n.

The Theil index is a special case for α = 1, that is,

Theil =
1
n

n

∑
i=1

bi
µ

log
(

bi
µ

)
. (9)

They are used additionally to group fairness measures to compare different algorithms and determine which
one is considered the fairest from an individual perspective.

22Till Speicher et al. “A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices”. In:
SIGKDD. 2018, pp. 2239–2248.

23Haas, see n. 12.
yjbian92@hotmail.com D3A MLT workshop 10 / 18



Background Challenges Appendices group-criteria individual

Individual fairness

Counterfactual fairness24 (definition). A predictor Ŷ is counterfactually fair if given observations X = x̆
and A = a we have that, P(ŶA←a = y | X = x̆, A = a) = P(ŶA←a′ = y | X = x̆, A = a), for all y and a′ ̸= a.
Proxy discrimination 25. A predictor Ŷ exhibits no individual proxy discrimination based on a proxy P if for
all p, p′, we have P(Ŷ | do(P = p))= P(Ŷ | do(P = p′)), where do(P = p) denotes an intervention on P.

24Matt J Kusner et al. “Counterfactual fairness”. In: NIPS. vol. 30. NIPS Proceedings. 2017, pp. 4069–4079.
25(Niki Kilbertus et al. “Avoiding discrimination through causal reasoning”. In: NIPS. vol. 30. 2017) Visually, intervening on P amounts to removing

all incoming arrows of P in the graph; algebraically, it consists of replacing the structural equation of P by P = p, i.e. we put point mass on the value p.
yjbian92@hotmail.com D3A MLT workshop 11 / 18
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Brief summary
Table 1: Summary of existing fairness measures.

Name of measure Fairness type1 Meaning Applicable situation(s) in definition Non-binary handling4

quant.2 fairer #label (nc) #sen-att (na)3 #values per Ai nai > 2 na > 1

Demographic parity (aka. statistical parity) *, group- yes lower value binary singular bi-valued yes indirectly
Disparate impact /80% rule *, group- yes larger value binary singular bi-valued yes indirectly

Disparate treatment *, group- poss. lower value binary singular bi- (multi- allowed) yes indirectly
Conditional statistical parity *, group- poss. lower value binary singular multi-valued — indirectly

Bounded group loss *, group- poss. lower value binary singular multi-valued — indirectly
Strategic minimax fairness *, group- no — bi-/multi- singular multi-valued — indirectly

Equalised odds *, group- yes lower value binary singular bi-valued yes indirectly
Equality of opportunity *, group- yes lower value binary singular bi-valued yes indirectly

Predictive equality *, group- poss. lower value binary singular multi-valued — indirectly
γ-subgroup fairness *, group- yes lower value binary singular bi-valued yes indirectly

Predictive parity *, group- yes lower value binary singular bi-valued yes indirectly
Lipschitz condition *, individual- no — binary singular bi-valued yes indirectly

General entropy indices (and the Theil index) *, individual- yes lower value binary singular multi-valued — indirectly
Counterfactual fairness *, individual- no — binary allows plural multi- allowed yes indirectly

Proxy discrimination *, individual- no — binary singular multi- allowed yes indirectly
Discriminative risk26 *, 5 yes lower value bi-/multi- allows plural multi-valued — —

Harmonic fairness via manifold27 *, 5 yes lower value bi-/multi- allows plural multi-valued — —
Multiaccuracy *,group- poss. lower value binary singular multi-valued — indirectly

Differentially fair *,group- poss. — binary allows plural bi- (multi- allowed) yes indirectly
Group benefit ratio and worst-case min-max ratio *,group- yes larger value binary allows plural bi- (multi- allowed) yes indirectly

Feature-apriori fairness procedural yes — binary — — yes yes
Feature-accuracy fairness procedural yes — binary — — yes yes
Feature-disparity fairness procedural yes — binary — — yes yes

FAE-based procedural fairness procedural yes lower value binary singular bi-valued yes indirectly

26Yijun Bian and Kun Zhang. “Increasing fairness via combination with learning guarantees”. In: arXiv preprint arXiv:2301.10813 (2023). Under
review.

27Yijun Bian and Yujie Luo. “Does machine bring in extra bias in learning? Approximating fairness in models promptly”. In: arXiv preprint
arXiv:2405.09251 (2024). Under review; Yijun Bian, Yujie Luo, and Ping Xu. “Approximating discrimination within models when faced with several
non-binary sensitive attributes”. In: arXiv preprint arXiv:2408.06099 (2024). Under review.
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Binarisation underestimates discrimination

Statistical parity (SP)28

A predictor h satisfies statistical parity under a distribution over (X,A,Y) if h(x) is independent of the
protected attribute a. Since h(x) ∈ [0, 1], this is equivalent to

P(f (x̆, a1) ⩾ z | a1 = j ) = P(f (x̆, a1) ⩾ z) (10)

for all j ∈ A1 = {1, 2, ..., na1} and z ∈ [0, 1].

Demographic parity (DP) |P(f (x̆, a1) = 1 | a1 ̸= 1)−P(f (x̆, a1) = 1 | a1 = 1)| ⩽ ε

#1 statistical non-discrimination criterion

♣

DP’s extension and alternative29 form

max
j∈A1

|P(f (x̆, a1) = 1 | a1 = j)−P(f (x̆, a1) = 1)| , (11a)

max
j,k∈A1, j ̸=k

|P(f (x̆, a1) = 1 | a1 = j)−P(f (x̆, a1) = 1 | a1 = k)| . (11b)

28Corbett-Davies et al., see n. 13; Agarwal, Dudı́k, and Wu, see n. 13.
29Jiang et al., see n. 9.
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Binarisation underestimates discrimination

Demographic parity (DP) |P(f (x̆, a1) = 1 | a1 ̸= 1)−P(f (x̆, a1) = 1 | a1 = 1)| ⩽ ε
Equality of opportunity (EOpp) |P(f (x̆, a1) = 1 | a1 ̸= 1, y = 1)−P(f (x̆, a1) = 1 | a1 = 1, y = 1)| ⩽ ε
Predictive parity (PP) |P(y = 1 | a1 ̸= 1, f (x̆, a1) = 1)−P(y = 1 | a1 = 1, f (x̆, a1) = 1)| ⩽ ε

Three statistical non-discrimination criteria

♣

EOpp’s extension and alternative form

max
j∈A1

|P(f (x̆, a1) = 1 | a1 = j, y = 1)−P(f (x̆, a1) = 1 | y = 1)| , (10a)

max
j,k∈A1, j ̸=k

|P(f (x̆, a1) = 1 | a1 = j, y = 1)−P(f (x̆, a1) = 1 | a1 = k, y = 1)| . (10b)

PP’s extension and alternative form

max
j∈A1

|P(y = 1 | a1 = j, f (x̆, a1) = 1)−P(y = 1 | f (x̆, a1) = 1)| , (11a)

max
j,k∈A1, j ̸=k

|P(y = 1 | a1 = j, f (x̆, a1) = 1)−P(y = 1 | a1 = k, f (x̆, a1) = 1)| . (11b)
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Binarisation underestimates discrimination
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Figure 1: Comparison of three commonly used group fairness measures and their extensions, on Income,
Compas PPR, and Compas PPVR datasets.
(a–b) Comparison between binarisation and the two extension forms, analogously to Eq. (11a) and (11b); note
that binarisation is equivalent to their original definitions like (1). (c–d) Comparison between binarisation and
their corresponding average forms. (e) Comparison between binarisation and all four extension formulas.
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Binarisation underestimates discrimination
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Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Income dataset. (a–e) Using bagging, AdaBoost, LightGBM, AdaFair (trained using
#1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Binarisation underestimates discrimination
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Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Compas PPR dataset. (a–e) Using bagging, AdaBoost, LightGBM, AdaFair (trained
using #1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Binarisation underestimates discrimination
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Figure 1: Comparison of fairness measures between their original definisions and their corresponding
extension forms, on the Compas PPVR dataset. (a–e) Using bagging, AdaBoost, LightGBM, AdaFair (trained
using #1 sen-att), and AdaFair (trained using #2 sen-att), respectively.
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Traversal-based generalisation incurs computational burdens
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Figure 2: Time cost comparison of three commonly used group fairness measures and their extension forms,
on Income, Compas PPR, and Compas PPVR datasets.
(a–b) Time cost comparison at different scales, and note that this is only for one 5- or 6-valued SA. Obviously,
degenerating intersectional attributes (A = A1×A2 = Zna1×Zna2 where na1 , na2 ⩾2) into one “super” discrete SA through
preprocessing is not an efficient way: It may be practical when both na1 and na2 are small enough, yet the computational
cost increases exponentially as these values grow (e.g., if na1 =2 and na2 changes from 2 to 6, A′ transitions from Z4 to Z12).
(c–d) Time cost comparisons, including individual fairness measures that are suitable for one multi-valued
SA, indicate that individual fairness has an even heavier computational burden.
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Traversal-based generalisation incurs computational burdens
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Figure 2: Time cost comparison of HFM for binary-value and multi-value cases, on Income, Compas PPR,
and Compas PPVR datasets.
(a–b) Time cost comparisons of direct computation. (c–d) Comparisons including approximated results.29

28Bian and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
29Bian and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Accuracy and fairness are not strictly incompatible
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Figure 3: Scatter plot between performance (accuracy) and fairness. Note that on the y-axis, the smaller the
better; on the x-axis, the larger the better. (a) Using three commonly used group fairness measures; (b) Using
their first extension forms; (c) Using their second extension forms; (d) Using individual fairness measures.
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Individual- and group- fairness are not inherently incompatible
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a–c)
Using the Theil index as the individual fairness.
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Individual- and group- fairness are not inherently incompatible
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a–c)
Using DR as the individual fairness.
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Individual- and group- fairness are not inherently incompatible
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a–c)
Using the previous HFM31 as the individual fairness.

30Bian and Luo, see n. 27.
31Ibid.
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Individual- and group- fairness are not inherently incompatible
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Figure 4: Relation between individual fairness and group fairness (DP, EOpp, and PP), on the Income,
Compas PPR, and Compas PPVR datasets. Note that on both x- and y- axes, the smaller the better. (a–c)
Using the maximum HFM31 as the individual fairness.

30Bian, Luo, and Xu, see n. 27.
31Ibid.
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Thanks! Questions?
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Other distributive fairness

Fairness through unawareness32

A predictor is said to achieve fairness through unawareness (FTU) (or unconscious/unaware fairness) if all
protected attributes A are excluded from the decision-making process.
Despite its compelling simplicity, this approach has a clear shortcoming: the remaining attributes X may
contain discriminatory information analogous to A that may not be obvious at first, acting as proxy attributes.
As a result, discrimination cannot be guaranteed to be eliminated.

Discriminative risk (DR)33

DR(f ) = E[I(f (x̆, a) ̸= f (x̆, ã))] , (12)

where ã is a perturbed a, and na ⩾ 1, |Ai| ⩾ 2 (i ∈ [na]).

Harmonic fairness via manifold (HFM)34 (three versions, see below)

32Dwork et al., see n. 10; Nina Grgić-Hlača et al. “The case for process fairness in learning: Feature selection for fair decision making”. In: NIPS
symposium on machine learning and the law. Vol. 1. 2. Barcelona, Spain. 2016, p. 11; Kusner et al., see n. 24; Gajane and Pechenizkiy, see n. 9.

33Bian and Zhang, see n. 26.
34Bian and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Other distributive fairness

Harmonic fairness via manifold (HFM)32

Given a dataset D = (X,A,Y), it has three versions: (1) the previous HFM for one bi-valued SA, and (2) the
maximal (resp. average) HFM for several multi-valued SAs.

For one bi-valued SA a1 ∈ A1 = {0, 1}, D is divided into D1 = {(x̆a, y) ≜ (x̆, a1, y) ∈ D | a1 = 1} and
D̄1 = D \D1, then given a specific distance metric d(·, ·) (e.g., the standard Euclidean metric), the previous
HFM is

dfprev(f ) =
gf (D1, D̄1)

g(D1, D̄1)
− 1 , (12)

where
g·(D1, D̄1; ÿ) = max{ max

(x̆a ,y)∈D1

min
(x̆′a ,y′)∈D̄1

d((x̆, ÿ), (x̆′, ÿ′)) max
(x̆′a ,y′)∈D̄1

min
(x̆a ,y)∈D1

d((x̆, ÿ), (x̆′, ÿ′))},

and gf (D1, D̄1) = g·(D1, D̄1; f (x̆, a1)), g(D1, D̄1) = g·(D1, D̄1; y) are two abbreviations for brevity.

32Bian and Luo, see n. 27; Bian, Luo, and Xu, see n. 27.
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Other distributive fairness

Harmonic fairness via manifold (HFM) (cont.)

For one or more multi-valued SAs a ∈ A where na ⩾ 1 and |Ai| ⩾ 2 (i ∈ [na]), the maximal (resp. average)
HFM are

df = log

(
gf ,a(D)

ga(D)

)
, (12a)

dfavg(f ) = log

gavg
f ,a (D)

gavg
a (D)

 , (12b)

where

g·,a(D; ÿ) = max1⩽i⩽na g·,a(D, ai; ÿ) , (13a)

gavg
·,a (D; ÿ) = 1

na
∑na

i=1 gavg
·,a (D, ai; ÿ) , (13b)

g·,a(D, ai; ÿ) = maxi∈[nai ]
{max(x̆a,y)∈Dj

min(x̆′a,y′)∈D̄j
d((x̆, ÿ), (x̆′, ÿ′))},

gavg
·,a (D, ai; ÿ) = 1

n ∑j∈[nai ]
∑(x̆,y)∈Dj

min(x̆′ ,y′)∈D̄j
d((x̆, ÿ), (x̆′, ÿ′)).

Note that Dj ={(x̆a, y)∈D|ai = j}, D̄j =D\Dj, and special case g·,a(D, ai; ÿ)=g·(D1, D̄1; ÿ) when Ai ={0, 1}.
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Procedural fairness

Here we use D to denote the set of all instances/members (or queried users of
society), and S the set of all possible features that might be used in the decision-
making process (in other words, |S|⩽nd + na). Given a set of features S′, let fS′
denote the classifier that uses those features S′.

Feature-apriori fairness. For a given feature s ∈ S, let Ds ⊆ D denote the set of all members that consider the
feature s fair to use without a priori knowledge of how its usage affects outcomes. Then

PFapr(fS′ ) ≜
|⋂si∈S′ Dsi |
|D| . (14)

Feature-accuracy fairness. (see below)

Feature-disparity fairness. (see below)

These three measures32 accommodate scenarios with multiple SAs, each potentially having multiple values.
Despite this advantage, they rely heavily on features and on a set of members/users who perceive these features as fair,
which may still introduce hidden discrimination or human prejudice. Moreover, their computation is complex and
time-consuming, as user judgments may evolve with learning, limiting their practical applicability.

32Grgić-Hlača et al., “The case for process fairness in learning: Feature selection for fair decision making”, see n. 32; Nina Grgić-Hlača et al. “Beyond
distributive fairness in algorithmic decision making: Feature selection for procedurally fair learning”. In: AAAI. vol. 32. 1. 2018.
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Procedural fairness

Feature-accuracy fairness. Let Dacc
s ⊆D denote the set of all members that consider the feature s fair to be use

if it increases the accuracy of the classifier. Note that typically Ds⊆Dacc
s is expected, though this need not always

hold exactly (due to either noise in estimating member preferences, or some members attaching some sort of
negative connotation to the notion of accuracy). Then

PFacc(fS′ ) ≜
|⋂si∈S′ Cond(Dsi ,D

acc
si

)|
|D| , (14)

where
Cond(Dsi , Dacc

si
) =

{
Dsi , if acc(fS′ ) ⩽ acc(fS′\{si});
Dsi

⋃
Dacc

si
= Dacc

si
, otherwise .

Feature-disparity fairness. (cf. Appendices) Let Ddisp
s ⊆ D denote the set of all members that consider the feature

s fair to use even if it increases a measure of disparity (i.e., disparate impact or disparate mistreatment) of the
classifier. Typically Ddisp

s ⊆ Ds is expected, though this need not always hold strictly due to estimation error
or other reasons. Let disp(fS′ ) denote the disparity it induces, and then

PFdisp(fS′ ) ≜
|⋂si∈S′ Cond(Dsi ,D

disp
si )|

|D| , (15)

where

Cond(Dsi , Ddisp
si )=

{
Ddisp

si , if disp(fS′ ) > disp(fS′\{si});

Dsi

⋃
Ddisp

si = Dsi , otherwise .
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Procedural fairness

Additionally,32 proposed an FAE-based (feature attribution explanation) metric to assess group procedural
fairness, which depends on the specific FAE techniques employed.

FAE-based group procedural fairness. A given dataset D is divided into two subsets by the values of a single
SA, that is, D1 = {(xi, a1i, yi) ∈ D | a1i = 1} and D2 = {(xi, a1i, yi) ∈ D | a1i = 0}. A local FAE function g(·)
takes a model f (·) and an explained data point (xi, a1i) as inputs and returns explanations (i.e., feature
importance scores) ei = g(f , xi, a1i) ∈ Rnd+1, where its j-th component eij is the importance score of the feature
xij for the model’s prediction f (xi, a1i). For a distance measure de(·, ·) between two sets of FAE explanation
results E1 and E2, then

GPFFAE = de(E1, E2) ;

E1 = {ei | ei = g(f , xi, a1i), (xi, a1i) ∈ D′1} ,

E2 = {ej | ej = g(f , xj, a1j), (xj, a1j) ∈ D′2} ,

(14)

where D′1 and D′2 are sets of n data points from D1 and D2, respectively, generated by [its Algorithm 1].

32Ziming Wang, Changwu Huang, and Xin Yao. “Procedural fairness in machine learning”. In: arXiv preprint arXiv:2404.01877 (2024).
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