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Background Methodology Instructions Appendix

Examples of bias 2,3,4

Manuscripts under review1

1 Yijun Bian⋆ and Kun Zhang. ”Increasing fairness via combination with learning guarantees”. In: arXiv
preprint arXiv:2301.10813v1 (2023).

2 Yijun Bian#⋆ and Yujie Luo#. ”Does machine bring in extra bias in learning? Approximating fairness in
models promptly”. In: arXiv preprint arXiv:2405.09251 (2024).

3 Yijun Bian#⋆ , Yujie Luo#⋆ , and Ping Xu. ”Approximating discrimination within models when faced with
several non-binary sensitive attributes”. In: arXiv preprint arXiv:2408.06099 (2024).

1#Equal contribution; ∗corresponding author.
2AI detectors were more likely to flag writing by international students (i.e., non-native speakers) as AI-generated (Weixin Liang et al. “GPT

detectors are biased against non-native English writers”. In: ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models. 2023)
3When people of color have complex medical needs, they are less likely to be referred to programmes that provide more individualised

care (Linda Nordling. “A fairer way forward for AI in health care”. In: Nature 573.7775 [2019], S103–S103)
4Black defendants were mislabelled as high risk more often than white defendants (Lorenzo Belenguer. “AI bias: exploring discriminatory

algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry”. In: AI and
Ethics 2.4 [2022], pp. 771–787)
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Challenging

Fairness definitions and measures/metrics a,b

Incompatibility among fairness measures
Multi-attribute fairness protection
The trade-off between fairness and accuracy
Fairness estimation based on a finite sample
Insufficient data

Our motivation
aPre- and post-processing mechanisms normally function by manipulating

input or output, while inprocessing mechanisms introduce fairness constraints
into training procedures or algorithmic objectives

bGroup fairness focuses on statistical/demographic equality among groups
defined by sensitive attributes, while individual fairness follows a principle that
“similar individuals should be evaluated or treated similarly.”
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My research
My research in this direction, up to the present
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Research question recap5

1. How to properly measure the discriminative level of a classifier from both
individual and group fairness aspects?

2. How to evaluate the discrimination level within classifiers when facing
more than one sensitive attribute (potentially with multiple values)?

3. How to make use of these proposed fairness measure/metric(s)?

5Yijun Bian and Kun Zhang. “Increasing Fairness via Combination with Learning Guarantees”. In: arXiv preprint arXiv:2301.10813v1 (2023).
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Discriminative risk (DR) —from an individual aspect

Following the principle of individual fairness, with an instance denoted by x = (x̆, a), the fairness
quality of one hypothesis6 f (·) could be evaluated by

ℓbias(f , x) = I (

model prediction on
the raw instance︷ ︸︸ ︷

f ( x̆ , a ) ̸=

model prediction when only
sensitive attribute(s) are changed︷ ︸︸ ︷

f ( x̆ , ã ) ) (1)

the indicator function

non-sensitive attributes

sensitive attribute(s)
sensitive attribute(s) that
are slightly disturbed

similarly to the 0/1 loss. Note that Eq. (1) is evaluated on only one instance x with sensitive
attributes (SAs).

6The hypothesis used in this equation could indicate an individual classifier or an ensemble classifier.
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Discriminative risk (DR) —from a group aspect

To describe this characteristic of the hypothesis on multiple instances (aka. from a group level),
then the empirical discriminative risk on one dataset S is expressed as

L̂bias(f , S) =
1
n

n

∑
i=1

ℓbias(f , xi) , (2)

discriminative risk of f (·) on one instance

and the true discriminative risk7 of the hypothesis over a data distribution is

Lbias(f ) = E(x,y)∼D [ ℓbias(f , x) ] , (3)

discriminative risk of f (·) on one instance

respectively.

Note that the empirical DR on S is an unbiassed estimation of the true DR.

7The instances from S are independent identically distributed (i.i.d.) drawn from an input/feature-output/label space X×Y according to an
unknown distribution D.
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∗ A property of DR

ℓbias(f , x) = I
(
f (x̆, a) ̸= f (x̆, ã)

)
L̂bias(f , S) =

1
n

n

∑
i=1

ℓbias(f , xi)

Lbias(f ) = E(x,y)∼D [ ℓbias(f , x) ]

1 For one random variable X representing instances, ℓbias(f , x) could be viewed as a new
random variable obtained by using a few fixed operations on X, recorded as Y.

2 For n random variables (i.e., X1,X2, ...,Xn representing instances) that are independent
and identically distributed (iid.), by operating them in the same way, we can get random
variables Y1,Y2, ...,Yn that are iid. as well.

3 Then we can rewrite L̂bias(f , S) as 1
n ∑n

i=1 Yi and Lbias(f ) as EY∼D′ [Y], where D′ denotes
the space after operating X ∼ D.

4 Therefore, it could be easily seen that the former is an unbiased estimation of the latter.
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Our distinction

Two distinctions from individual fairness measures
1 relies on the choice of similarity/distance metric
2 instance pairs in comparison coming from original data

Two distinctions from group fairness measures
Five distinctions from causal fairness
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Background Methodology Instructions Appendix DR HFM

Our distinction

Two distinctions from individual fairness measures
Two distinctions from group fairness measures

1 works for only one sensitive attribute (usually bi-valued)
2 computing separately for each subgroup, then difference

Five distinctions from causal fairness
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Our distinction

Two distinctions from individual fairness measures
Two distinctions from group fairness measures
Five distinctions from causal fairness

1 works for only one sensitive attribute (although possibly multi-valued)
2 based on causal models/graphs, not a quantitative measure
3 non-sensitive attributes may vary with it in counterfactual fairness
4 conditions for achieving them are stronger
5 DR can be proved to be bounded vs. no such advantage
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Our distinction

Two distinctions from individual fairness measures
Two distinctions from group fairness measures
Five distinctions from causal fairness

ℓbias(f , x) = I
(
f (x̆, a) ̸= f (x̆, ã)

)
L̂bias(f , S) =

1
n

n

∑
i=1

ℓbias(f , xi)

Lbias(f ) = E(x,y)∼D [ ℓbias(f , x) ]

L′bias(f ) = |E(x,y)∼D|a=1[ℓbias(f , x)]

−E(x,y)∼D|a=0[ℓbias(f , x)]|
Similarities that DR shares with the existing fairness measures

follows the same principle as individual fairness measures
is computed over a group of instances (like one dataset or a data distribution)
indicates the discrimination level from a statistical/demographic perspective
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Validating DR, a fairness quality measure
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Figure 1: Comparison of the proposed
discriminative risk (DR) with three group
fairness measures, that is, DP, EO, and PQP. (a)
Scatter diagrams with the degree of correlation,
where the x- and y-axes are different fairness
measures and the variation of accuracy between the
raw and disturbed data. (b) Correlation among
multiple criteria. Note that correlation here is
calculated based on the results from all datasets.
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Figure 2: Example: law school success. (a) Test
MSE of different models, where ‘undisturbed‘ and
‘disturbed’ denote the results obtained from the
original and disturbed data respectively. (b) The
comparison between the change in MSE and DR,
which suggests that DR≈0 when the
corresponding model satisfies or nearly satisfies
counterfactual fairness.
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Interim summary8

RQ 1. How to properly measure the discriminative level of a classifier from both individual and group fairness aspects?

Discriminative risk (DR) is proposed, that is,

ℓbias(f , x) = I( f (x̆, a) ̸= f (x̆, ã) )

Widely applicable, with two reasons enlarging its applicable fields/scenarios:

1 suitable for both binary and multi-class classification
2 allows one or more SAs, and each SA allows binary or multiple values

Limitations
1 The computational results of DR may be affected somehow by a randomness factor
2 The degree of influence due to the number of values in SAs may vary, although its

property remains

8Bian and Zhang, see n. 5.
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Research question recap9

2′. How to evaluate the added discrimination introduced by ML models (on
top of potential discrimination present in the raw data) properly?
– in the face of one sensitive attribute with binary values
– in the face of one sensitive attribute (with multiple values)
– in the face of several sensitive attributes (with multiple values)

3′. How to efficiently evaluate the added discrimination introduced in the
learning process?

– A quick approximation of distances between sets for the Euclidean spaces

9Yijun Bian and Yujie Luo. “Does Machine Bring in Extra Bias in Learning? Approximating Fairness in Models Promptly”. In: arXiv preprint
arXiv:2405.09251 (2024); Yijun Bian, Yujie Luo, and Ping Xu. “Approximating Discrimination Within Models When Faced With Several Non-Binary
Sensitive Attributes”. In: arXiv preprint arXiv:2408.06099 (2024). Under Review.
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Harmonic Fairness via Manifolds (HFM)

If we view the instances (with the same value of sensitive attributes) as data points on certain manifold(s),
the manifold representing members from the marginalised/unprivileged group(s) is supposed to
be as close as possible to that representing members from the privileged group.

To measure the fairness with respect to the sensitive attribute, we use a concept of ‘distance of sets’
introduced in mathematics, recorded as D, to evaluate the discrepancy among groups divided by
sensitive attributes. Then a fairness measure10 is built upon the concept of distances between sets.

10indicating difference from both individual- and group- apsects
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Distance between sets —for one bi-valued SA

Given a specific distance metric d(·, ·)11 on the feature space, the distance between two subsets is
defined by

D·( S1 , S̄1 ) ≜ max
{

max
(x,y)∈S1

to find the nearest data point in S̄1︷ ︸︸ ︷
min

(x′ ,y′)∈S̄1

d
(
(x̆, ÿ), (x̆′, ÿ′)

)
,

max
(x′ ,y′)∈S̄1

min
(x,y)∈S1

d
(
(x̆, ÿ ), (x̆′, ÿ′)

)}
,

(6)
the privileged group

the marginalised/unprivileged group(s)

works for both the true label y and the
prediction ŷ of a trained classifier f (·)

and is viewed as an approximation of the distance between the
manifold of unprivileged groups and that of the privileged group.

Basic properties satisfied:

1 For any two data sets S0 , S1 ∈ X ×Y , D(S0 , S1) = 0 if and only if S0 equals S1 ; and

2 For any sets S0 , S1 , and S2 , we have the triangle inequality

D(S0 , S2) ⩽ D(S0 , S1) + D(S1 , S2) .

11Here we use the standard Euclidean metric. In fact, any two metrics d1 , d2 derived from norms on the Euclidean space Rd are equivalent in the
sense that there are positive constants c1 , c2 such that c1d1(x, y) ⩽ d2(x, y) ⩽ c2d1(x, y) for all x, y ∈ Rd .
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HFM12 [Work 1 in this series]

For the distance between two subsets, and that of a trained classifier f (·), we have

D(S1 , S̄1) ≜ max
{

max
(x,y)∈S1

min
(x′ ,y′ )∈S̄1

d
(
(x̆, y), (x̆′ , y′)

)
, max
(x′ ,y′ )∈S̄1

min
(x,y)∈S1

d
(
(x̆, y), (x̆′ , y′)

)}
, (7a)

Df (S1 , S̄1) = max
{

max
(x,y)∈S1

min
(x′ ,y′ )∈S̄1

d
(
(x̆, ŷ), (x̆′ , ŷ′)

)
, max
(x′ ,y′ )∈S̄1

min
(x,y)∈S1

d
(
(x̆, ŷ), (x̆′ , ŷ′)

)}
. (7b)

We remark that D(S1, S̄1) suggests the biases from the data and Df (S1, S̄1) suggests the biases from
the algorithm. Then the following value could be used to indicate the fairness degree of this
classifier, that is,

dfprev(f ) =
Df (S1, S̄1)

D(S1, S̄1)
− 1 . (8)

12Bian and Luo, see n. 9.
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Distance between sets —for one multi-valued SA

By extending Eq. (6), we introduce the following distance measures: (i) maximal distance measure for
one sensitive attribute

D·,a(S, ai) ≜ max
1⩽j⩽nai

{
max

(x,y)∈Sj

to fine the nearest data point in S̄j︷ ︸︸ ︷
min

(x′ ,y′)∈S̄j

d
(
(x̆, ÿ), (x̆′, ÿ′)

) }
, (9)

and (ii) average distance measure for one sensitive attribute

Davg
·,a (S, ai) ≜

1
n

nai

∑
j=1

∑
(x,y)∈Sj

min
(x′ ,y′)∈S̄j

d
(
(x̆, ÿ), (x̆′, ÿ′)

)
, (10)

where S̄j= S\Sj, and nai = |Ai| ⩾ 2 is the number of optional values for the sensitive attribute
ai ∈ Ai. Notice that D·,a(S, ai)=D·(S1, S̄1) when Ai={0, 1}.
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Distance between sets —for several multi-valued SAs

For the general case, we introduce the generalised distance measures: (i) maximal distance measure
for sensitive attributes

D·,a(S) ≜ max
1⩽i⩽na

D·,a(S, ai) , (11)

and (ii) average distance measure for sensitive attributes

Davg
·,a (S) ≜

1
na

na

∑
i=1

Davg
·,a (S, ai) . (12)
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HFM13 [Work 2 in this series]

We remark that Da(S), Davg
a (S) reflect the biases from the data and that Df ,a(S), Davg

f ,a (S) reflect the
extra biases from the learning algorithm. Then the following values could be used to reflect the
fairness degree of this classifier, that is,

df(f ) = log

(
Df ,a(S)
Da(S)

)
, (13a)

dfavg(f ) = log

(
Davg

f ,a (S)

Davg
a (S)

)
. (13b)

We name the fairness degrees defined as above of one classifier by Eq. (13) as ‘maximum harmonic
fairness measure via manifolds (HFM)’ and ‘average HFM’, respectively.

13Bian, Luo, and Xu, see n. 9.
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Comparison between HFM14 and baseline fairness measures

DR1 df1 dfa
vg
1 DR2 df2 df

avg
2   DRavg df dfav

g

Accuracy

f1 score

ΔAccuracy

Δf1 score

0.208 0.025 -0.146 -0.747 0.169 -0.422 0.208 0.051 -0.059

0.895 0.197 0.766 0.847 -0.073 0.896 0.895 0.182 0.804

0.801 0.268 0.414 0.977 -0.057 0.648 0.801 0.149 0.423

0.711 0.241 0.318 0.420 0.058 0.450 0.711 0.176 0.372 -0.5

0.0

0.5

(a)

DR1 df1 dfa
vg
1 DR2 df2 df

avg
2   DRavg df dfav

g

Precision

Recall

Specificity

ΔPrecision

ΔRecall

ΔSpecificity

0.448 0.388 0.449 0.308 0.071 0.549 0.448 0.613 0.521

0.863 0.251 0.684 0.812 -0.041 0.755 0.863 0.163 0.707

-0.268 -0.159 -0.301 -0.617 -0.022 -0.460 -0.268 -0.042 -0.294

-0.006 0.505 -0.180 -0.343 0.202 -0.336 -0.006 0.608 -0.171

0.268 -0.018 0.382 0.871 -0.045 0.765 0.268 0.045 0.420

0.919 0.312 0.551 0.992 -0.081 0.666 0.919 0.158 0.546 -0.50

-0.25

0.00

0.25

0.50

0.75

(b)
Figure 3: Correlation heatmap between normal evaluation
metric and fairness measure, for all sensitive attributes within
the dataset. Here we use DRavg = 1

na
∑na

i=1 DRi to reflect the
bias level on the whole dataset.
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Figure 4: Correlation heatmap between normal evaluation
metric and fairness, for one single sensitive attribute. Note that
dfprev = Df (S1 , S̄1)/D(S1 , S̄1)− 1 represents our previous work,
and df = log(Df ,a(S, ai)/Da(S, ai)) and df

avg = log(Davg
f ,a (S, ai)/Davg

a (S, ai))

here represent HFM in this paper for each sensitive attribute.

14Bian, Luo, and Xu, see n. 9.
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ExtendDist15 [Work 2 in this series]

Algorithm 1 Approximation of extended distance between
sets for several sensitive attributes with multiple values, aka.
ExtendDist ({(x̆i, ai)}n

i=1, {ÿi}n
i=1; m1, m2),

Input: Dataset S = {(xi, yi)}n
i=1 = {(x̆i, ai, yi)}n

i=1 where
ai = [ai,1, ai,2, ..., ai,na ]

T, prediction of S by the classifier
f (·) that has been trained, that is, {ŷi}n

i=1, and two hyper-
parameters m1 and m2 as the designated numbers for repe-
tition and comparison respectively

Output: Approximation of D·,a(S) and Davg
·,a (S)

1: for j from 1 to na do
2: d(j)max, d(j)avg = ApproxDist ({(x̆i, ai,j)}n

i=1, {ÿi}n
i=1; m1, m2)

3: return max1⩽j⩽na{d
(j)
max | j ∈ [na]} and 1

na
∑na

j=1 d(j)avg

15Bian, Luo, and Xu, see n. 9.
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ApproxDist16 [Work 1&2 in this series]

Algorithm 2 (Simplified) Approxi-
mation of distance between sets, aka.
ApproxDist ({(x̆i, ai)}n

i=1, {ÿi}n
i=1; m1, m2)

Input: Dataset S = {(xi , yi)}n
i=1 = {(x̆i , ai , yi)}n

i=1 , prediction of
S by the classifier f (·) that has been trained, that is, {ŷi}n

i=1 ,
and two hyper-parameters m1 and m2 as the designated num-
bers for repetition and comparison respectively

Output: Approximation of distance D·(S1 , S̄1) in Eq. (6)
1: for j from 1 to m1 do
2: Take a random vector w from the space W = {w =

[w0 , w1 , ..., wnx ]
T | ∑nx

i=0 |wi | = 1} ⊆ [−1, 1]1+nx

3: dj
max = AcceleDist ({(x̆i , ai)}n

i=1 , {ÿi}n
i=1 , w; m2)

4: return min{dj
max | j ∈ [m1 ]}

Algorithm 2 Approximation of distance between sets
(for one sensitive attribute with multiple values), aka.
ApproxDist ({(x̆i, ai)}n

i=1, {ÿi}n
i=1; m1, m2)

Input: Dataset S = {(xi , yi)}n
i=1 = {(x̆i , ai , yi)}n

i=1 , prediction of S by the classifier
f (·) that has been trained, that is, {ŷi}n

i=1 , and two hyper-parameters m1 and
m2 as the designated numbers for repetition and comparison respectively

Output: Approximation of D·,a(S, ai) and Davg
·,a (S, ai)

1: for j from 1 to m1 do
2: Take two orthogonal vectors w0 and w1 where each

wk ∈ [−1,+1]1+nx (k = {0, 1})
3: for k from 0 to 1 do
4: tk

max , tk
avg = AcceleDist ({(x̆i , ai)}n

i=1 , {ÿi}n
i=1 , wk ; m2)

5: dj
max = min{tk

max | k ∈ {0, 1}} = min{t0
max , t1

max}
6: dj

avg = min{tk
avg | k ∈ {0, 1}} = min{t0

avg , t1
avg}

7: return min{dj
max | j ∈ [m1 ]} and 1

n min{dj
avg | j ∈ [m1 ]}

16Bian and Luo, see n. 9; Bian, Luo, and Xu, see n. 9.
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Distance approximation for Euclidean spaces

We observe that the distance between similar data points tends to be closer than others after projecting
them onto a general one-dimensional linear subspace (refer to17).

To estimate the distance between data points inside X ×Y ,

g(x, ÿ; w) = g(x̆, a, ÿ; w) = [ÿ, x1, ..., xnx ]
Tw , (14)

where
a random projection g :X×Y 7→R

a non-zero random vector w=[w0, w1, ..., wnx ]
T

That is to say, after sorting all the projected data points on R, it is likely that for one instance (x, y) in
Sj, the desired instance argmin(x′ ,y′)∈S̄j

d
(
(x̆, y), (x̆′, y′)

)
would be somewhere near it after the projection,

and vice versa. Thus, searching for it could be accelerated by checking several adjacent instances
rather than traversing the whole dataset.

17Bian and Luo, see n. 9, Lemma 1.
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AcceleDist18 [Work 1&2 in this series]

Algorithm 3 Acceleration sub-procedure in approximation, aka. AcceleDist ({(x̆i, ai)}n
i=1, {ÿi}n

i=1, w; m2)

Input: Data points {(x̆i, ai)}n
i=1, its corresponding value {ÿi}n

i=1, where ÿi could be its true label yi or prediction ŷi by the
classifier f (·), a random vector w for projection, and a hyper-parameter m2 as the designated number for comparison

Output: Approximation of distance D·(S0, S1) in Eq. (6)
Output: Approximation of D·,a(S, ai) and nDavg

·,a (S, ai)

1: Project data points onto a one-dimensional space based on Eq. (14), in order to obtain {g(xi, ÿi; w)}n
i=1

2: Sort original data points based on {g(xi, ÿi; w)}n
i=1 as their corresponding values, in ascending order

3: for i from 1 to n do
4: Set the anchor data point (xi, ÿi) in this round
5: // If ai = j (marked for clarity), in order to approximate min(x′ ,y′)∈S̄j

d
(
(x̆i, ÿi), (x̆′ , ÿ′)

)
6: Compute the distances d((x̆i, ÿi), ·) for at most m2 nearby data points that meets a ̸= ai and g(x̆, ÿ; w) ⩽ g(x̆i, ÿi; w)

7: Find the minimum among them, recorded as ds
min

8: Compute the distances d((x̆i, ÿi), ·) for at most m2 nearby data points that meets a ̸= ai and g(x, ÿ; w) ⩾ g(xi, ÿi; w)

9: Find the minimum among them, recorded as dr
min

10: d(i)min = min{ds
min, dr

min}
11: return max{d(i)min | i ∈ [n]}
12: return max{d(i)min | i ∈ [n]} and ∑n

i=1 d(i)min

18Bian and Luo, see n. 9; Bian, Luo, and Xu, see n. 9.
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Validity of approximation19 for distances in Euclidean spaces
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Figure 5: Comparison of approximation distances between sets with precise distances that are calculated
directly by definition, evaluated on test data. (a) Scatter plot showing approximated values and precise values of
distances between sets; (b) Relative difference comparison of ApproxDist with direct computation concerning distance
values. (c–d) Comparison of time cost (second) between ApproxDist and direct computation based on Eq. (6).

19Bian and Luo, see n. 9.
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Validity of distance approximation20 in Euclidean spaces
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Figure 6: Comparison of approximation distances with precise distances that are calculated directly by
definition, evaluated on test data. (a–b), (c–d), (e–f), and (g–h) Scatter plots for comparison between
approximated and precise values of D·,a(S), D·,a(S, ai), Davg

·,a (S), and Davg
·,a (S, ai), respectively.

20Bian, Luo, and Xu, see n. 9.
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Validity of distance approximation20 in Euclidean spaces
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Figure 6: Comparison of approximation distances with precise distances that are calculated directly by
definition, evaluated on test data. (i–j) Time cost comparison between ExtendDist and direct computation;
(k–l) Time cost comparison between ApproxDist and direct computation. Note that ‘prev’ denotes
approximation results obtained by the simplified Algorithm 2.

20Bian, Luo, and Xu, see n. 9.
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Interim summary21

RQ 2. How to efficiently measure the added discrimination introduced in learning by a classifier?

Work 1 Work 2

Distance between sets D(S1, S̄1) D·,a(S, ai)(S, ai) Davg
·,a (S, ai)(S, ai)

D·,a(S)(S) Davg
·,a (S)(S)

HFM dfprev(f ) df(f ) dfavg(f )
Approximation for one SA AcceleDist AcceleDist

ApproxDist ApproxDist
Approximation for several SA ExtendDist

21Bian and Luo, see n. 9; Bian, Luo, and Xu, see n. 9.
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Why-and-how-to-use recap22

1. How to properly measure the discriminative level of a classifier from both individual
and group fairness aspects?

3.′ Can fairness be boosted with some learning guarantee? Will
COMBINATION help mitigate discrimination in multiple biassed
individual classifiers?

3.′′ How to utilise the proposed metric to obtain better ensemble classifiers?

22Bian and Zhang, see n. 5.
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Cancellation-of-bias effect 23 in ensemble combination

Inspired by existing work for error rates and oracle bounds
First- and second-order oracle bounds concerning fairness
Similarly to the cancellation-of-errors effect in ensemble combination

The DR of an ensemble can be bounded by a constant times the DR of the individual classifiers

23Bian and Zhang, see n. 5.
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Ensemble combination

The weighted voting prediction by an ensemble of m trained individual classifiers parameterised by
a weight vector ρ = [w1, w2, ..., wm]T ∈ [0, 1]m, such that ∑m

j=1 wj = 1, wherein wj is the weight of
individual classifier fj(·), is given by

wvρ(x) = argmax
y ∈Y

m

∑
j=1

wj I( fj(x) = y ) . (15)

weight corresponding to fj(·) individual classifier

ensemble combination via weighted vote optional choice of labels

where a function f ∈F : X 7→F denotes a hypothesis in a space of hypotheses F . Note that ties are
resolved arbitrarily.

Ensemble classifiers predict by taking a weighted combination of predictions by hypotheses from
F , and the ρ-weighted majority vote wvρ(·) predicts

wvρ(x) = argmax
y∈Y

Eρ [I( f (x) = y ) ] .

potential ρ corresponding to an ensemble over [0, 1]m
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Oracle bounds of fairness

If the weighted vote makes a discriminative decision, then at least a ρ-weighted half of the
classifiers have made a discriminative decision and, therefore,

ℓbias(wvρ, x) ⩽ I( Eρ[ I(f (x̆, a) ̸= f (x̆, ã)) ] ⩾ 0.5 ) . (16)

discriminative risk of an individual classifier f (·) on one instance x
that is, ℓbias(f , x)discriminative risk of

an ensemble wvρ(·)

Ensemble classifiers (via weighted voting)
take a weighted combination of predictions by hypotheses, and
predict a label that receives the largest number of votes

In other words, the ρ-weighted majority vote wvρ(·) predicts

wvρ(x) = argmax
y∈Y

Eρ[I[ f (x)= y)] ,

where ρ corresponds to a potential ensemble over a hypothesis space.

Meaning of wvρ(·)

♣

Theorem 1 (First-order oracle bound)

Lbias(wvρ) ⩽ 2 Eρ[ Lbias(f ) ] . (17)

discriminative risk of an ensemble wvρ discriminative risk of an individual classifier f

the worst case is controlled to a constant multiple
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Tandem discriminative risk

To investigate the bound deeper, we introduce here the tandem fairness quality of two hypotheses
f (·) and f ′(·) on one instance (x, y), adopting the idea of the tandem loss,24 by

ℓbias(f , f ′, x) = I
(

f (x̆, a) ̸= f (x̆, ã) ∧ f ′(x̆, a) ̸= f ′(x̆, ã)
)

. (18)

tandem discriminative risk discriminative risks present in both of them

hypothesis f (·) predicts differently for similar instances hypothesis f ′(·) also predicts differently for them

The tandem fairness quality counts a discriminative decision on the instance (x, y) if and only if
both f (·) and f ′(·) give a discriminative prediction on it. Note that in the degeneration case

ℓbias(f , f , x) = ℓbias(f , x) . (19)

when f ′(·) and f (·) are identical discriminative risk of f (·)

24Andrés R Masegosa et al. “Second order PAC-Bayesian bounds for the weighted majority vote”. In: NeurIPS. vol. 33. Curran Associates, Inc., 2020,
pp. 5263–5273.
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Oracle bounds of fairness (cont.)

Then the expected tandem fairness quality is defined by Lbias(f , f ′)= E(x,y)∼D [ℓbias(f , f ′, x)].

Theorem 3 (Second-order oracle bound)

Lbias(wvρ) ⩽ 4 Eρ2 [ Lbias(f , f ′)] . (20)

discriminative risk of an ensemble wvρ tandem discriminative risk of two individuals f and f ′

the worst case is controlled to a constant multiple

In multi-class classification,

Eρ2 [ Lbias(f , f ′) ] = ED [Eρ[ ℓbias(f , x) ]2] . (21)

the expected tandem discriminative risk

discriminative risk of f (·)

Lemma 2

♣

yjbian92@gmail.com MIA Seminar 32 / 51



Background Methodology Instructions Appendix Approximation Why-and-how Applicance of DR

Oracle bounds of fairness (cont.)

Theorem 4 (C-tandem oracle bound)

If Eρ[Lbias(f )] < 1/2 , then

Lbias(wvρ) ⩽
Eρ2 [ Lbias(f , f ′) ]−Eρ[ Lbias(f ) ]2

Eρ2 [ Lbias(f , f ′) ]−Eρ[ Lbias(f ) ] + 1
4

. (22)

discriminative risk of an ensemble wvρ
discriminative risk

tandem discriminative risk

the worst case is controlled, alternative bound based on Chebyshev-Cantelli inequality

All oracle bounds are expectations that can only be estimated on finite samples instead of being
calculated precisely. They could be transformed into empirical bounds via PAC analysis as well to
ease the difficulty of giving a theoretical guarantee of the performance on any unseen data, which
we discuss in this subsection. Based on the Hoeffding’s inequality, we can deduct generalisation
bounds presented in Theorems 5 and 6.
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PAC bounds for the weighted vote

Theorem 5

For any δ ∈ (0, 1), with probability at least (1− δ) over a random draw of S with a size of n, for a single
hypothesis f (·),

Lbias(f ) ⩽ L̂bias(f , S) +
√

1
2n ln 1

δ . (23)

discriminative risk of a hypothesis empirical discriminative risk of this hypothesis

the worst case is controlled with a specific bound

Theorem 6

For any δ ∈ (0, 1), with probability at least (1− δ) over a random draw of S with a size of n, for all
distributions ρ on F ,

Lbias(wvρ) ⩽ L̂bias(wvρ, S) +

√
1

2n log |F |δ . (24)

discriminative risk of an ensemble empirical discriminative risk of this ensemble

the worst case is controlled with a specific bound
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Our distinction

Despite the similar names of “first- and second-order oracle bounds” from our inspiration,25 the
essences of our bounds are distinct from theirs. To be specific, their work investigates the bounds
for generalisation error and is not relevant to fairness issues, while ours focus on the theoretical
support for bias mitigation. In other words, their bounds are based on the 0/1 loss

ℓerr(f , x) = I( f (x) ̸= y ) , (25)

the loss of the classifier f (·)

model prediction on the raw data

label of this instance, which means it makes mistakes on the instance

while ours are built on ℓbias(f , x) in Eq. (1), that is,

ℓbias(f , x) = I( f (x̆, a) ̸= f (x̆, ã) ) .

the discriminative risk of f (·) model prediction when only sensitive attribute(s) are changed

model prediction on the raw data

Besides, we have two more (PAC) generalisation bounds that they don’t.

25Masegosa et al., see n. ??.
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Validating the oracle&PAC bounds
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Figure 7: Correlation for oracle bounds and generalisation bounds. (a–c) Correlation between Lbias(wvρ) and oracle
bounds, where Lbias(wvρ) is indicated on the vertical axis and the horizontal axes represent the right-hand sides of inequalities (17), (20),
and (22), respectively. (d) The horizontal and vertical axes in (d) denote the right- and left-hand sides in (21), respectively. (e–f) Correlation
between Lbias(·) and generalisation bounds, where Lbias(·) is indicated on the vertical axis and the right-hand sides of inequalities (23) and
(24) are indicated on the horizontal axes, respectively. Note that correlation here is calculated based on the results from all datasets.
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Interim summary26

RQ 3. Why and how can we make use of these proposed fairness measure/metric(s)?

Ensemble combination: fairness can be boosted without being dependent on
specific (hyper-)parameters, e.g.,

Lbias(wvρ) ⩽ 2 Eρ[ Lbias(f ) ] cf. Theorem 1

Lbias(wvρ) ⩽ 4 Eρ2 [ Lbias(f , f ′) ] cf. Theorem 3

26Bian and Zhang, see n. 5.
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Why-and-how-to-use recap27

1. How to properly measure the discriminative level of a classifier from both individual
and group fairness aspects?

3.′ Can fairness be boosted with some learning guarantee? Will COMBINATION help
mitigate discrimination in multiple biassed individual classifiers?

3.′′ How to utilise the proposed metric to obtain better ensemble classifiers?

27Bian and Zhang, see n. 5.
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Concept of domination28

We evaluate the accuracy quality of a hypothesis f (·) by the 0/1 loss ℓerr(f , x), the empirical loss by
L̂err(f , S) = 1

n ∑n
i=1 ℓerr(f , x), and the expected loss by Lerr(f ) = ED [ℓerr(f , x)], respectively.

Definition 7 (Domination)
Let Lerr(·) and Lbias(·) be two sub-objectives to be minimised, and let G = (Lerr,Lbias) be the
objective for a Pareto optimal solution. For two probability distributions ρ and π on F that are
independent of S: 1) ρ weakly dominates π if Lerr(wvρ) ⩽ Lerr(wvπ) and
Lbias(wvρ) ⩽ Lbias(wvπ), denoted as ⪰G ; 2) ρ dominates π if ρ ⪰G π and either
Lerr(wvρ) < Lerr(wvπ) or Lbias(wvρ) < Lbias(wvπ), denoted as ≻G .

28A concept of domination (Chao Qian, Yang Yu, and Zhi-Hua Zhou. “Pareto ensemble pruning”. In: AAAI. vol. 29. 1. 2015, pp. 2935–2941) is
introduced to take fairness and accuracy into account simultaneously during pruning. Note that the domination relationship is used to achieve a
Pareto optimal solution for this bi-objective minimisation case, where two sub-objectives are viewed as improving fairness and accuracy, respectively.
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To construct fairer ensembles

A solution wvρ(·) is Pareto optimal if there is
no other solution in F that dominates wvρ(·).

Algorithm 4 Pareto Optimal Ensemble Pruning via Improving Accuracy and
Fairness Concurrently (POAF)

Input: training set S= {(xi, yi)}n
i=1, original ensemble F= {fj(·)}m

j=1 via weighted
vote, and threshold k as maximum size of the sub-ensemble after pruning

Output: Pruned sub-ensemble H (H ⊂ F and |H| ⩽ k)
1: Randomly pick k individual members from F, indicated by r

2: Initialise a candidate set for pruned sub-ensembles P = {r}
3: for i = 1 to k do
4: Randomly choose r from P with equal probability

5: Generate r′ by flipping each bit of r with probability 1/m

6: if ∃ z ∈ P such that z ≻G r′ then
7: continue
8: P = (P \ {z ∈ P | r′ ⪰G z})⋃{r′}
9: Let V = N−(r′)

⋃N+(r′)

10: Sort V by argminv∈V L̂(v, S) in ascending order

11: for v ∈ V do
12: if ∃ z ∈ P such that z ≻G v then
13: continue
14: P = (P \ {z ∈ P | v ⪰G z})⋃{v}
15: H = argminr∈P L̂(r, S)
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Comparison between POAF and fairness-aware ensemble-based methods29
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Figure 8: Comparison.. (a–d) Scatter plots showing fairness and accuracy of each algorithm, evaluated on the test
data. (e–h) Plots of best test-set fairness-accuracy trade-offs per algorithm, where fairness is DP, EO, PQP, and DR,
respectively. Lines show the mean value, and shades show 95% confidence intervals; The smaller the better.

29André F Cruz et al. “FairGBM: Gradient Boosting with Fairness Constraints”. In: ICLR. 2023.
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Comparison of POAF with EPAF-C and EPAF-D (& ensemble pruning methods)
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Figure 9: Comparison of the state-of-the-art pruning methods with POAF, where the dashed and solid lines
indicate the size of the original ensemble and the expected size of the pruned sub-ensemble, respectively.
(a–b) Comparison over the space and time cost, respectively.
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Alternative: Bi-objective

An alternative way to compare two hypotheses by considering both fairness and accuracy is to
define an objective function based on an adaptive weighted sum method, i.e.,

L(f , f ′) = λ
Lerr(f )+Lerr(f ′)

2 + (1− λ)Lbias(f , f ′) , (26)

wherein λ ∈ (0, 1) represents a regularisation factor introduced to balance fairness and accuracy
and to indicate their relative importance as well. Note that this is a symmetrical function, that is,
L(f , f ′) = L(f ′, f ), and that in the degeneration case L(f , f ) = λLerr(f ) + (1− λ)Lbias(f ) when two
hypotheses f (·) and f ′(·) are identical. Then we can obtain the objective for the weighted vote as

L(wvρ) = λEρ[Lerr(f )] + (1− λ)Eρ2 [Lbias(f , f ′)] , (27)

which is expected to be minimised to improve fairness and accuracy concurrently.
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Alternative: EPAF

Ensemble pruning via increasing accuracy and fairness concurrently (EPAF)

H

P

P'

P3

P1

P2

Algorithm 5 Centralised Version of Ensemble
Pruning via Improving Accuracy and Fairness
Concurrently (EPAF-C)

Input: training set S = {(xi, yi)}n
i=1, original ensemble

F = {fj(·)}m
j=1, and threshold k as maximum size

after pruning
Output: Pruned sub-ensemble H (H ⊂ F and |H| ⩽ k)

1: H← an arbitrary individual member fi ∈ F
2: for i = 2 to k do
3: f ∗ ← argminfi∈F\H ∑fj∈H L̂(fi, fj, S)
4: Move f ∗ from F to H

Algorithm 6 Distributed Version of Ensemble
Pruning via Improving Accuracy and Fairness
Concurrently (EPAF-D)

Input: training set S = {(xi, yi)}n
i=1, original ensemble

F = {fj(·)}m
j=1, threshold k as maximum size after

pruning, and number of machines nm
Output: Pruned sub-ensemble H (H ⊂ F and |H| ⩽ k)

1: Partition F randomly into nm groups as equally as
possible, i.e., F1, ..., Fnm

2: for i = 1 to nm do
3: Hi ← EPAF-C(Fi, k)
4: H′ ← EPAF-C(

⋃nm
i=1 Hi, k)

5: H← argminT∈{H1 ,...,Hnm ,H′} L̂(T, S)
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Thanks! Questions?

yjbian92@gmail.com MIA Seminar 45 / 51


	Background
	Methodology
	Discrimination Risk (DR)
	Harmonic Fairness via Manifolds (HFM)

	How to use
	To estimate the distance quickly
	Why-and-how-to-use recapbian2023increasingre
	Why-and-how-to-use recapbian2023increasingre

	Appendix

