Increasing Fairness via Combination with Learning Guarantees¹

Yijun BIAN

National University of Singapore

26 October 2023

¹Yijun Bian et al. "Increasing Fairness via Combination with Learning Guarantees". In: arXiv preprint arXiv:2301.10813 (2023). Under Review.

Overview

- 2 Methodology
- 3 Discussions
- Appendix

Examples of bias

AI detectors were more likely to flag writing by international students (i.e., non-native speakers) as AI-generated²

²Weixin Liang et al. "GPT detectors are biased against non-native English writers". In: ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models. 2023.

Examples of bias

When people of color have complex medical needs, they are less likely to be referred to programmes that provide more individualised care²

²Linda Nordling. "A fairer way forward for AI in health care". In: Nature 573.7775 (2019), S103–S103.

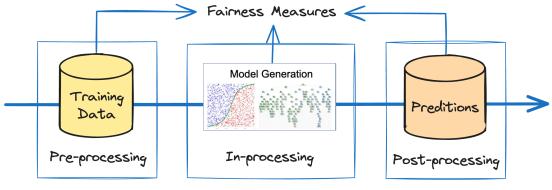
Examples of bias

Black defendants were mislabelled as high risk more often than white defendants²

²Lorenzo Belenguer. "AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry". In: *AI and Ethics* 2.4 (2022), pp. 771–787.

Background Methodology Discussions Appendix

Mechanisms to enhance fairness³

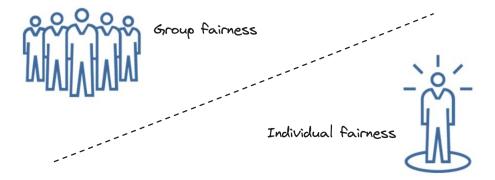


Mechanism Type

Pre- and *post-processing mechanisms* normally function by manipulating input or output, while *inprocessing mechanisms* introduce fairness constraints into training procedures or algorithmic objectives

³Simon Caton and Christian Haas. "Fairness in machine learning: A survey". In: *ACM Comput Surv* (2020); Sorelle A Friedler et al. "A comparative study of fairness-enhancing interventions in machine learning". In: *FAT*. Atlanta, GA, USA: Association for Computing Machinery, 2019, pp. 329–338; Cynthia Dwork et al. "Decoupled classifiers for group-fair and efficient machine learning". In: *FAT*. vol. 81. PMLR, 2018, pp. 119–133.

Types of fairness measures



*Group fairness*⁴ focuses on statistical/demographic equality among groups defined by sensitive attributes, while *individual fairness* follows a principle that "similar individuals should be evaluated or treated similarly."

⁴Michael Feldman et al. "Certifying and removing disparate impact". In: *SIGKDD*. Sydney, NSW, Australia: Association for Computing Machinery, 2015, pp. 259–268, Pratik Gajane and Mykola Pechenizkiy. "On formalizing fairness in prediction with machine learning". In: *FAT/ML*. 2018; Moritz Hardt, Eric Price, and Nathan Srebro. "Equality of opportunity in supervised learning". In: *NIPS*. vol. 29. Barcelona, Spain: Curran Associates Inc., 2016, pp. 3323–3331; Alexandra Chouldechova. "Fair prediction with disparate impact: A study of bias in recidivism prediction instruments". In: *Big Data* 5.2 (2017), pp. 153–163; Sahil Verma and Julia Rubin. "Fairness definitions explained". In: *FairWare*. IEEE. 2018, pp. 1–7.

Our target in this work

Research gap

- The hard compatibility among these measures means that unfair decisions may still exist even if one of them is satisfied⁵
- The possibility of theoretical guarantees of boosting fairness is rarely discussed in the existing fairness-aware ensemble-based methods⁶

⁵Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and machine learning*. fairmlbook.org, 2019; Richard Berk et al. "Fairness in criminal justice risk assessments: The state of the art". In: *Sociol Methods Res* 50.1 (2021), pp. 3–44; Geoff Pleiss et al. "On fairness and calibration". In: *NIPS*. vol. 30. 2017; Hardt, Price, and Srebro, see n. 4.

⁶Vasileios Iosifidis and Eirini Ntoutsi. "AdaFair: Cumulative fairness adaptive boosting". In: *CIKM*. New York, NY, USA: ACM, 2019, pp. 781–790; Wenbin Zhang et al. "FARF: A fair and adaptive random forests classifier". In: *PAKDD*. Springer. 2021, pp. 245–256; André F Cruz et al. "FairGBM: Gradient Boosting with Fairness Constraints". In: *ICLR*. 2023.

Our target in this work

Research gap

- The hard compatibility among these measures means that unfair decisions may still exist even if one of them is satisfied⁵
- The possibility of theoretical guarantees of boosting fairness is rarely discussed in the existing fairness-aware ensemble-based methods⁶

Questions that we endeavour to answer

- **()** How to properly measure the discriminative level of a classifier from both individual and group fairness aspects?
- Can fairness be boosted with some learning guarantee? Will COMBINATION help mitigate discrimination in multiple biassed individual classifiers?

⁵Barocas, Hardt, and Narayanan, see n. 5; Berk et al., see n. 5; Pleiss et al., see n. 5; Hardt, Price, and Srebro, see n. 4. ⁶Iosifidis and Ntoutsi, see n. 6; Zhang et al., see n. 6; Cruz et al., see n. 6.

Overview

2 Methodology

3 Discussions

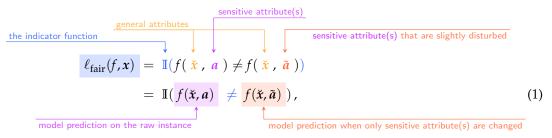
Appendix

Research question recap

1. How to properly measure the discriminative level of a classifier <u>from both</u> <u>individual and group fairness aspects</u>?

Discriminative risk (DR) —from an individual aspect

Following the principle of individual fairness, the fairness quality of one hypothesis⁷ $f(\cdot)$ could be evaluated by



similarly to the 0/1 loss. Note that Eq. (1) is evaluated on only one instance with sensitive attributes *x*.

⁷The hypothesis used in this equation could indicate an individual classifier or an ensemble classifier.

Discriminative risk (DR) — from a group aspect

To describe this characteristic of the hypothesis on multiple instances (aka. from a group level), then the empirical discriminative risk on one dataset S is expressed as

$$\hat{\mathcal{L}}_{\text{fair}}(f,S) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\text{fair}}(f, \mathbf{x}_i) , \qquad (2)$$

discriminative risk of $f(\cdot)$ on one instance

and the true discriminative risk⁸ of the hypothesis over a data distribution is

$$\mathcal{L}_{\text{fair}}(f) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} \left[\ell_{\text{fair}}(f, \mathbf{x}) \right], \tag{3}$$

discriminative risk of $f(\cdot)$ on one instance

respectively.

 $^{^{8}}$ The instances from S are independent identically distributed (i.i.d.) drawn from an input/feature-output/label space $\mathcal{X} \times \mathcal{Y}$ according to an unknown distribution \mathcal{D} .

Empirical results of DR in comparison with group fairness measures^{9,10}

Observation: DR captures better the characteristic of the changed treatment

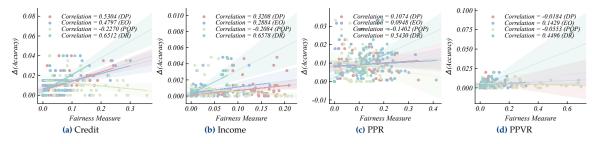


Figure 1: Comparison of the proposed DR with three group fairness measures, that is, DP, EO, and PQP. (a–d) Scatter diagrams with the degree of correlation on the credit, income, ppr, and ppvr datasets, respectively, where the x- and y-axes are different fairness measures and the variation of accuracy between the raw and disturbed data.

⁹They are demographic parity (DP) (Feldman et al., see n. 4; Gajane and Pechenizkiy, see n. 4), equality of opportunity (EO) (Hardt, Price, and Srebro, see n. 4), and predictive quality parity (PQP) (Chouldechova, see n. 4; Verma and Rubin, see n. 4).

¹⁰Five public datasets that we use include Ricci, Credit, Income, PPR, and PPVR, aka. Propublica-Recidivism and Propublica-Violent-Recidivism.

Research question recap

2. *Can fairness be <u>boosted with some learning guarantee</u>? Will COMBINATION help mitigate discrimination in multiple biassed individual classifiers?*

Oracle bounds of fairness

If the weighted vote makes a discriminative decision, then at least a ρ -weighted half of the classifiers have made a discriminative decision and, therefore,

$$\ell_{\text{fair}}(\mathbf{wv}_{\rho}, \mathbf{x}) \leq \mathbb{I}(\mathbb{E}_{\rho}[\mathbb{I}(f(\check{\mathbf{x}}, a) \neq f(\check{\mathbf{x}}, \tilde{a}))] \geq 0.5).$$

 $\frac{\text{discriminative risk of}}{\text{an ensemble } \mathbf{w}\mathbf{v}_{\rho}(\cdot)}$

(4)

that is, $\ell_{\text{fair}}(f, x)$ discriminative risk of an individual classifier $f(\cdot)$ on one instance x

Meaning of $\mathbf{w}\mathbf{v}_{o}(\cdot$

Ensemble classifiers (via *weighted voting*)

• take a weighted combination of predictions by hypotheses, and

• predict a label that receives the largest number of votes In other words, the ρ -weighted majority vote $wv_{\rho}(\cdot)$ predicts

$$\mathbf{wv}_{\rho}(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} \mathbb{E}_{\rho}[\mathbb{I}[f(\mathbf{x}) = y)],$$

where ρ corresponds to a potential ensemble over a hypothesis space.

Oracle bounds of fairness

If the weighted vote makes a discriminative decision, then at least a ρ -weighted half of the classifiers have made a discriminative decision and, therefore,

$$\ell_{\text{fair}}(\mathbf{wv}_{\rho}, \mathbf{x}) \leq \mathbb{I}(\mathbb{E}_{\rho}[\mathbb{I}(f(\check{\mathbf{x}}, \mathbf{a}) \neq f(\check{\mathbf{x}}, \tilde{\mathbf{a}}))] \geq 0.5).$$

$$\uparrow \text{that is, } \ell_{\text{fair}}(f, \mathbf{x})$$

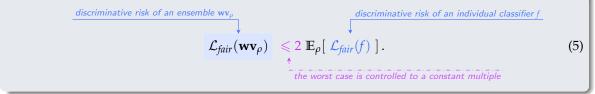
$$\text{discrimination risk of an individual classifier } f(\cdot) \text{ on one instance } \mathbf{x}$$

an ensemble $\mathbf{w}\mathbf{v}_{\rho}(\cdot)$

discrimination

discriminative risk of an individual classifier $f(\cdot)$ on one instance x

Theorem 1 (First-order oracle bound)



(4)

Tandem discriminative risk

To investigate the bound deeper, we introduce here the tandem fairness quality of two hypotheses $f(\cdot)$ and $f'(\cdot)$ on one instance (x, y), adopting the idea of the tandem loss,¹¹ by

$$\frac{\ell_{\text{fair}}(f, f', \mathbf{x})}{\ell_{\text{fair}}(f, f', \mathbf{x})} = \mathbb{I}\left(f(\check{\mathbf{x}}, a) \neq f(\check{\mathbf{x}}, \tilde{a}) \land f'(\check{\mathbf{x}}, a) \neq f'(\check{\mathbf{x}}, \tilde{a})\right).$$

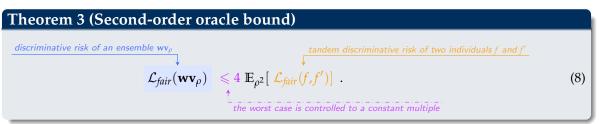
$$f'(\check{\mathbf{x}}, a) \neq f'(\check{\mathbf{x}}, \tilde{a}) \land f'(\check{\mathbf{x}}$$

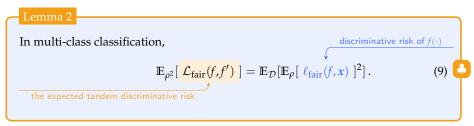
The tandem fairness quality counts a discriminative decision on the instance (x, y) if and only if both $f(\cdot)$ and $f'(\cdot)$ give a discriminative prediction on it. Note that in the degeneration case

¹¹ Andrés R Masegosa et al. "Second order PAC-Bayesian bounds for the weighted majority vote". In: *NeurIPS*. vol. 33. Curran Associates, Inc., 2020, pp. 5263–5273.

Oracle bounds of fairness (cont.)

Then the expected tandem fairness quality is defined by $\mathcal{L}_{\text{fair}}(f, f') = \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell_{\text{fair}}(f, f', x)].$





Empirical results of oracle bounds

Observation: The discriminative risk (DR) of an ensemble is indeed smaller than the bounds presented in Theorems 1 and 3 in most cases, indicating that these inequalities are reliable

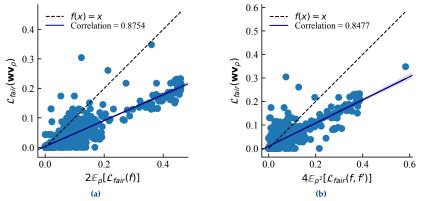


Figure 2: Correlation for oracle bounds. (a–b) Correlation between $\mathcal{L}_{\text{fair}}(\mathbf{wv}_{\rho})$ and oracle bounds, where $\mathcal{L}_{\text{fair}}(\mathbf{wv}_{\rho})$ is indicated on the vertical axis and the horizontal axes represent the right-hand sides of inequalities (5), and (8), respectively.

Overview

Background

2 Methodology

4 Appendix

RQ 2. Can fairness be <u>boosted with some learning guarantee</u>? Will COMBINATION help mitigate discrimination in multiple biassed individual classifiers?

Ensemble combination: fairness can be boosted without <u>being dependent on</u> <u>specific (hyper-)parameters</u>

$$\begin{aligned} \mathcal{L}_{\text{fair}}(\mathbf{wv}_{\rho}) &\leq 2 \mathbb{E}_{\rho} [\mathcal{L}_{\text{fair}}(f)] & \text{cf. Theorem 1} \\ \mathcal{L}_{\text{fair}}(\mathbf{wv}_{\rho}) &\leq 4 \mathbb{E}_{\rho^2} [\mathcal{L}_{\text{fair}}(f, f')] & \text{cf. Theorem 3} \end{aligned}$$

¹²P.S. Please refer to our paper for full methodology and empirical results

Summary¹²

RQ 1. How to properly measure the discriminative level of a classifier from both individual and group fairness aspects?

Discriminative risk (DR) is proposed, that is,

 $\ell_{\text{fair}}(f, \mathbf{x}) = \mathbb{I}(f(\mathbf{\check{x}}, a) \neq f(\mathbf{\check{x}}, \mathbf{\check{a}})).$

DR is widely applicable, with two reasons enlarging its applicable fields/scenarios:

- suitable for both binary and multi-class classification
- allows one or multiple sensitive attributes, and each sensitive attribute allows binary and multiple values

¹²P.S. Please refer to our paper for full methodology and empirical results

Future work

ightarrow Limitations

- The computational results of DR may be affected somehow by a <u>randomness factor</u>
- The degree of influence due to <u>the number of values in sensitive</u> <u>attributes</u> may vary, although its property remains

Pros

1. *Discriminative risk (DR)* is widely applicable

2. *Ensemble combination*: fairness can be boosted without *being dependent on specific* (*hyper-*)*parameters*

Thanks! Questions?