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Overview

We study the assessment of discrimination level of machine learning (ML) mod-

els when several sensitive attributes exist with multiple values, proposing

a fairness metric (Harmonic Fairness measure via Manifolds, HFM ), by viewing
instances with sensitive attributes as data points on certain manifolds

two approximation algorithms (ApproxDist and ExtendDist) to quickly

estimate the distance between sets—basis of HFM, accelerate the bias

evaluation, and broaden its practical applicability

Problem Statement and Motivation

Given a dataset S composed of instances including sensitive attributes (SAs):

S = {( x̆i︸︷︷︸
non-sensitive / unprotected

, ai︸︷︷︸
sensitive / protected attributes

, yi)}n
i=1 ,

where one instance is denoted by

x = (x̆, a) = [
nx is # non-sensitive attributes︷ ︸︸ ︷

x1, ..., xnx
,

na is # sensitive attributes︷ ︸︸ ︷
a1, ..., ana

]T .

Inspired by individual fairness principle—similar treatment for similar individuals,

if viewing the instances (with the same SAs) as data points on certain manifolds, the

manifold representing members from the marginalised group(s) is supposed to be as

close as possible to that representing members from the privileged group.

To measure the fairness in scenarios of one or more sensitive attributes, we get

inspiration from ‘the distance between sets’ in mathematics.

Proposed Fairness Metric: HFM

Distance between sets for one bi-valued SA

For na =1 and ai ∈Ai ={0, 1}, the distance between two subsets—the manifold(s)

of marginalised group(s) and that of the privileged group

D·(S1, S̄1) , max
{

max(x,y)∈S1 min(x′,y′)∈S̄1
d
(
(x̆, ÿ), (x̆′, ÿ′)

)
,

max(x′,y′)∈S̄1
min(x,y)∈S1 d

(
(x̆, ÿ), (x̆′, ÿ′)

)} (1)

ai =1 means a member from the privileged group

two disjoint subsets S1 and S̄1 =S\S1 ={(x, y)∈ S |ai 6=1}
a given specific distance metric d(·, ·) (e.g., the standard Euclidean metric)

a simplified notation ÿ that could be the true label y or prediction ŷ

(1) becomes D(S1, S̄1) using y, and Df(S1, S̄1) when using ŷ for classifiers

Distance between sets for multi-valued SA(s)

When only one single sensitive attribute exists (i.e., na =1), let a = [ai]T, ai ∈Ai =
{1, 2, ..., nai

}, nai
> 3, and nai

∈Z+. We extend (1) and introduce

i) maximal distance measure for one sensitive attribute

D·,a(S, ai) , max16j6nai

{
max(x,y)∈Sj

to find the nearest point in S̄j︷ ︸︸ ︷
min(x′,y′)∈S̄j

d
(
(x̆, ÿ), (x̆′, ÿ′)

) }
(2)

ii) average distance measure for one sensitive attribute

Davg
·,a (S, ai) , 1

n

∑nai
j=1

∑
(x,y)∈Sj

min(x′,y′)∈S̄j
d
(
(x̆, ÿ), (x̆′, ÿ′)

)
(3)

a few disjoint subsets Sj = {(x, y)∈S | ai =j}, ∀j ∈Ai, and S̄j = S\Sj

in degenerate case D·,a(S, ai)=D·(S1, S̄1) when Ai ={0, 1}

When several sensitive attributes exist, that is, a= [a1, ..., ana
]T, and each ai ∈Ai =

{1, 2, .., nai
}, we have the generalised version

i) maximal distance measure for sensitive attributes

D·,a(S) , max16i6na
D·,a(S, ai) (4)

ii) average distance measure for sensitive attributes

Davg
·,a (S) , 1

na

∑na

i=1 Davg
·,a (S, ai) (5)

nai
is the number of values for this sensitive attribute ai (1 6 i 6 na)

Remark. (1) It is easy to see that D·,a(S) > Davg
·,a (S). (2) Both D·,a(S, ai) and

Davg
·,a (S, ai) measure the fairness regarding the sensitive attribute ai.

Fairness metric in model assessment: HFM

dfprev(f ) = Df,a(S)/Da(S) − 1 (6a)

df(f ) = log (Df,a(S)/Da(S)) (6b)

df avg(f ) = log (Davg
f,a(S)/Davg

a (S)) (6c)

Da(S), Davg
a (S) indicate the biases from the data

Df,a(S), Davg
f,a(S) indicate the extra biases from the learning algorithm

Proposed Approximation Algorithms

Approximation of distances between sets for Euclidean spaces

To estimate the distance between data points inside X × Y ,

g(x, ÿ; w) = g(x̆, a, ÿ; w) = [ÿ, x1, ..., xnx
]Tw , (7)

a random projection g :X ×Y 7→R
a non-zero random vector w=[w0, w1, ..., wnx

]T

the distance between similar data points tends to be closer than others after pro-

jecting them onto a general one-dimensional linear subspace

After sorting all the projected data points on R, it is likely that for one (x, y) in Sj,

the desired instance argmin(x′,y′)∈S̄j
d
(
(x̆, y), (x̆′, y′)

)
would be somewhere near it

after the projection, and vice versa. Thus, searching for it could be accelerated by

checking several adjacent instances rather than traversing the whole dataset.

ExtendDist & ApproxDist

Algorithm 3. ExtendDist to estimate D·,a(S) and Davg
·,a (S)

For j from 1 to na

d
(j)
max, d

(j)
avg = ApproxDist({(x̆i, ai,j)}n

i=1, {ÿi}n
i=1; m1, m2)

Return max16j6na
{d

(j)
max | j ∈ [na]} and 1

na

∑na

j=1 d
(j)
avg

Algorithm 2. ApproxDist to estimate D·,a(S, ai) and Davg
·,a (S, ai)

For j from 1 to m1

Take two orthogonal vectors w0 and w1 where each wk ∈ [−1, +1]1+nx (k ={0, 1})
For k from 0 to 1, get tk

max, tk
avg =AcceleDist({(x̆i, ai)}n

i=1, {ÿi}n
i=1, wk; m2)

dj
max = min{tk

max | k ∈ {0, 1}} = min{t0
max, t1

max}
dj
avg = min{tk

avg | k ∈ {0, 1}} = min{t0
avg, t1

avg}

Return min{dj
max | j ∈ [m1]} and 1

n min{dj
avg | j ∈ [m1]}

Algorithm 1. AcceleDist to estimate D·,a(S, ai) and nDavg
·,a (S, ai)

Project data points onto a 1-dim space and obtain {g(xi, ÿi; w)}n
i=1

Sort original data points using g(·, ·; w) in ascending order
For i from 1 to n
Set the anchor data point (xi, ÿi) in this round
// If ai =j (marked for clarity), to approximate min(x′,y′)∈S̄j

d
(
anchor, (x̆′, ÿ′)

)
Compute distances for at most m2 nearby data points that meets a 6=ai, g6gi

Find the minimum among them, recorded as ds
min

Compute distances for at most m2 nearby data points that meets a 6=ai, g>gi

Find the minimum among them, recorded as dr
min

d
(i)
min = min{ds

min, dr
min}

Return max{d
(i)
min | i ∈ [n]} and

∑n
i=1 d

(i)
min

High computational complexity (O(n2)) of directly calculating (2) and (3)

Reduced computational complexity (O(n log n)) of approximation algorithms

Empirical Results
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Figure 1. Comparison of approximated distances with precise values of definitions. (a–b), (c–d),

(e–f), and (g–h) Scatter plots for comparison between approximated and precise values of

D·,a(S), D·,a(S, ai), Davg
·,a (S), and Davg

·,a (S, ai), respectively; (i–j) and (k–l) Time cost comparison

between approximation algorithms (ExtendDist and ApproxDist) and direct computation.
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