

UNIVERSITY OF COPENHAGEN

Increasing Fairness via Combination with Learning Guarantees

Yijun Bian¹ Kun Zhang² ¹University of Copenhagen ²Hefei University of Technology

Funded by the European Union

Overview

- We study the discrimination level of machine learning (ML) models, proposing
- a fairness measure (discrimination risk, DR) from both individual- and group-fairness aspects
- the existence of a cancellation-of-discrimination effect in ensemble combination

Problem Statement and Motivation

Bounds Regarding Fairness for Weighted Vote

- tandem fairness quality of two hypotheses f(·) and f'(·)
 ℓ_{bias}(f, f', x) = I((f(x, a) ≠ f(x, a)))/(discriminative decision in f) ∧ (f'(x, a) ≠ f'(x, a)))/(discriminative decision in f) ∧ (f'(x, a) ≠ f'(x, a)))/(discriminative decision in f) → (f'(x, a)))/(discriminative decision in f) → (f'(x, a))/(discriminative decision in f) → (f'(x, a))/(discrim
- its fairness quality $\ell_{\text{bias}}(\mathbf{wv}_{\rho}, \boldsymbol{x}) = \mathbb{I}(\mathbf{wv}_{\rho}(\boldsymbol{\check{x}}, \boldsymbol{a}) \neq \mathbf{wv}_{\rho}(\boldsymbol{\check{x}}, \boldsymbol{\check{a}}))$
- for brevity, $\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}[\cdot]$ and $\mathbb{E}_{f\sim\rho}[\cdot]$ may be abbreviated as $\mathbb{E}_{\mathcal{D}}[\cdot]$ and $\mathbb{E}_{\rho}[\cdot]$

Given a dataset S composed of instances including sensitive attributes (SAs)

 $S = \{(\underbrace{\breve{x}_i}_{\text{non-sensitive / unprotected}}, \underbrace{\mathtt{x}_i}_{\text{sensitive / protected attributes}}, y_i)\}_{i=1}^n,$

- one instance $\boldsymbol{x} = (\breve{\boldsymbol{x}}, \boldsymbol{a})$, where the number of SAs $n_a \ge 1, n_a \in \mathbb{Z}_+$
- $ilde{a}$ is the slightly perturbed version of $m{a}$
- sensitive attributes $\boldsymbol{a} = [a_1, ..., a_{n_a}]^T$ allows several attributes each $a_i \in \mathcal{Z}_+$ $(1 \leq i \leq n_a)$ is a finite set of values
- finite label space $y \in \mathcal{Y} = \{1, 2, ..., n_c\}$, where the number of labels $n_c \ge 2$
- The weighted voting prediction by an ensemble

 $\mathbf{w}\mathbf{v}_{\rho}(\boldsymbol{x}) = \operatorname{argmax}_{y \in \mathcal{Y}} \sum_{j=1}^{m} w_{j} \mathbb{I}(f_{j}(\boldsymbol{x}) = y)$

a function in the hypothesis space f∈F: X → Y
a set of m trained individual/discriminative classifiers {f₁(·), ..., f_m(·)}
weight vector ρ=[w₁, ..., w_m]^T∈ [0, 1]^m, such that ∑^m_{j=1} w_j =1

Proposed Fairness Measure: DR

Fairness quality from both individual and group fairness aspects Following the principle of individual fairness, If the weighted vote makes a discriminative decision, then at least a ρ -weighted half of the classifiers have made a discriminative decision and, therefore, $\ell_{\text{bias}}(\mathbf{wv}_{\rho}, \mathbf{x}) \leq \mathbb{I}(\mathbb{E}_{\rho}[\mathbb{I}(f(\mathbf{\breve{x}}, \mathbf{a}) \neq f(\mathbf{\breve{x}}, \mathbf{a}))] \geq 0.5)$

Oracle bounds regarding fairness for weighted vote

Theorem 1. First-order oracle bound

 $\mathcal{L}_{\text{bias}}(\mathbf{wv}_{\rho}) \leqslant 2\mathbb{E}_{\rho}[\mathcal{L}_{\text{bias}}(f)].$

Lemma 1. In multi-class classification,

 $\mathbb{E}_{\mathcal{D}}[\mathbb{E}_{
ho}[\ell_{\mathsf{bias}}(f, \boldsymbol{x})]^2] = \mathbb{E}_{
ho^2}[\mathcal{L}_{\mathsf{bias}}(f, f')].$

 Theorem 2. Second-order oracle bound In multi-class classification,

 $\mathcal{L}_{ ext{bias}}(\mathbf{wv}_{
ho}) \leqslant 4\mathbb{E}_{
ho^2}[\mathcal{L}_{ ext{bias}}(f,f')]$.

• Theorem 3. C-tandem oracle bound If $\mathbb{E}_{\rho}[\mathcal{L}_{\text{bias}}(f)] < 1/2$, then

$$\mathcal{L}_{\text{bias}}(\mathbf{w}\mathbf{v}_{\rho}) \leqslant \frac{\mathbb{E}_{\rho^2}[\mathcal{L}_{\text{bias}}(f, f')] - \mathbb{E}_{\rho}[\mathcal{L}_{\text{bias}}(f)]^2}{\mathbb{E}_{\rho^2}[\mathcal{L}_{\text{bias}}(f, f')] - \mathbb{E}_{\rho}[\mathcal{L}_{\text{bias}}(f)] + \frac{1}{4}}$$

A prominent difference between our work and the work of Masegosa *et al.* is that they investigate the expected risk or accuracy rather than fairness quality.

the treatment/evaluation of one instance should not change solely due to minor changes in its sensitive attributes.

If it happens, this indicates the existence of underlying discriminative risks.

Naturally, the fairness quality of one hypothesis $f(\cdot)$ can be evaluated	by
f makes a discriminative decision	
$\ell_{\text{bias}}(f, \boldsymbol{x}) = \mathbb{I}(f(\boldsymbol{\breve{x}}, \boldsymbol{a}) \neq f(\boldsymbol{\breve{x}}, \boldsymbol{\widetilde{a}}))$	(1a)
$\hat{\boldsymbol{C}}_{\boldsymbol{i}}$, $(\boldsymbol{f},\boldsymbol{S}) = \frac{1}{2} \sum^{n} \boldsymbol{\ell}_{\boldsymbol{i}}$, $(\boldsymbol{f},\boldsymbol{\sigma}_{\boldsymbol{i}})$	(1h)

$$\mathcal{L}_{\text{bias}}(f, \mathcal{S}) = \overline{n} \sum_{i=1}^{n} \ell_{\text{bias}}(f, \mathbf{x}_i)$$

$$\mathcal{L}_{\text{bias}}(f) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[\ell_{\text{bias}}(f, \mathbf{x})]$$
(1D)
(1D)
(1D)

- (1a) is evaluated on only one instance, from an individual aspect
- (1b), the empirical DR on S, describes this from a group aspect
- (1c), the true DR of the hypothesis, same as above in (1b)
- (1b) is an unbiassed estimation of (1c), & no restrictions apply on $f(\cdot)$ type

Distinctions of *DR* from the existing fairness measures

- Two distinctions from individual fairness measures
 - the latter relies on the choice of similarity/distance metric
- Instance pairs in comparison come from the original dataset
- Two distinctions from group fairness measures
- the latter works for only one SA (usually with binary values)

In other words, their bounds are based on the O/1 loss $\ell_{err}(f, \mathbf{x}) = \mathbb{I}(f(\mathbf{x}) \neq y)$, while ours are built upon $\ell_{bias}(f, \mathbf{x})$ in (1a).

PAC bounds regarding fairness for the weighted vote

• Theorem 4. For any $\delta \in (0, 1)$, with probability at least $(1-\delta)$ over a random draw of S with a size of n, for a single hypothesis $f(\cdot)$,

$$\mathcal{L}_{\text{bias}}(f) \leqslant \hat{\mathcal{L}}_{\text{bias}}(f,S) + \sqrt{\frac{1}{2n}\ln\frac{1}{\delta}}.$$
 (4)

• Theorem 5. For any $\delta \in (0, 1)$, with probability at least $(1 - \delta)$ over a random draw of S with a size of n, for all distributions ρ on \mathcal{F} ,

$$\mathcal{L}_{\text{bias}}(\mathbf{w}\mathbf{v}_{\rho}) \leqslant \hat{\mathcal{L}}_{\text{bias}}(\mathbf{w}\mathbf{v}_{\rho}) + \sqrt{\frac{1}{2n}\log\frac{|\mathcal{F}|}{\delta}}.$$
 (5)

Generalisation bounds in (4) and (5) are derived from Hoeffding's inequality

Empirical Results

needs to compute separately for each subgroup and then get the discrepancy

Five distinctions from causal fairness (counterfactual fairness, proxy discrimination)

- the latter works for only one SA (although possibly including multiple values)
 based on causal models/graphs, and not a quantitative measure
- non-sensitive attributes may be changed as well in counterfactual fairness
 conditions for achieving them are stronger
- DR can be proved to be bounded

vs. no such advantage

Similarities that DR shares with the existing fairness measures

- Similarity with individual fairness measures
- It the former follows the same principle (i.e., individual fairness)
- sole change(s) in SAs indicates $(m{x},m{a})$ and $(m{x},m{ ilde{a}})$ are similar enough
- Similarity with group fairness measures
- is calculated over a group of instances (like one dataset or a data distribution)
- indicates the discrimination level from a statistical/demographic perspective —consistent with the idea of the latter

can be computed in the same way except that you don't have to

 $\mathcal{L}'_{\text{bias}}(f) = |\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}|\boldsymbol{a}=1}[\ell_{\text{bias}}(f, \boldsymbol{x})] - \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}|\boldsymbol{a}=0}[\ell_{\text{bias}}(f, \boldsymbol{x})]|$ (2)

Reference

[1] Andrés R Masegosa, Stephan Sloth Lorenzen, Christian Igel, and Yevgeny Seldin. Second order pac-bayesian bounds for the weighted majority vote. volume 33, pages 5263–5273. Curran Associates, Inc., 2020.

Acknowledgement

yibi@di.ku.dk