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Overview

We study the discrimination level of machine learning (ML) models, proposing

a fairness measure (discrimination risk, DR) from both individual- and

group-fairness aspects

the existence of a cancellation-of-discrimination effect in ensemble

combination

Problem Statement and Motivation

Given a dataset S composed of instances including sensitive attributes (SAs)

S = {( x̆i︸︷︷︸
non-sensitive / unprotected

, ai︸︷︷︸
sensitive / protected attributes

, yi)}n
i=1 ,

one instance x=(x̆, a), where the number of SAs na>1, na ∈Z+
ã is the slightly perturbed version of a

sensitive attributes a=[a1, ..., ana
]T allows several attributes

each ai ∈Z+ (16 i6na) is a finite set of values

finite label space y ∈ Y = {1, 2, ..., nc}, where the number of labels nc>2

The weighted voting prediction by an ensemble

wvρ(x) = argmaxy∈Y
∑m

j=1 wjI(fj(x) = y)

a function in the hypothesis space f ∈F : X 7→Y
a set of m trained individual/discriminative classifiers {f1(·), ..., fm(·)}
weight vector ρ=[w1, ..., wm]T ∈ [0, 1]m, such that

∑m
j=1 wj =1

Proposed Fairness Measure: DR

Fairness quality from both individual and group fairness aspects

Following the principle of individual fairness,

the treatment/evaluation of one instance should not change solely due to minor

changes in its sensitive attributes.

If it happens, this indicates the existence of underlying discriminative risks.

Naturally, the fairness quality of one hypothesis f (·) can be evaluated by

`bias(f, x) = I(
f makes a discriminative decision︷ ︸︸ ︷

f (x̆, a) 6= f (x̆, ã) ) (1a)

L̂bias(f, S) = 1
n

∑n
i=1 `bias(f, xi) (1b)

Lbias(f ) = E(x,y)∼D[`bias(f, x)] (1c)

(1a) is evaluated on only one instance, from an individual aspect

(1b), the empirical DR on S, describes this from a group aspect

(1c), the true DR of the hypothesis, same as above in (1b)

(1b) is an unbiassed estimation of (1c), & no restrictions apply on f (·) type

Distinctions of DR from the existing fairness measures

Two distinctions from individual fairness measures
the latter relies on the choice of similarity/distance metric

instance pairs in comparison come from the original dataset

Two distinctions from group fairness measures
the latter works for only one SA (usually with binary values)

needs to compute separately for each subgroup and then get the discrepancy

Five distinctions from causal fairness (counterfactual fairness, proxy discrimination)

the latter works for only one SA (although possibly including multiple values)

based on causal models/graphs, and not a quantitative measure

non-sensitive attributes may be changed as well in counterfactual fairness

conditions for achieving them are stronger

DR can be proved to be bounded

vs. no such advantage

Similarities that DR shares with the existing fairness measures

Similarity with individual fairness measures
the former follows the same principle (i.e., individual fairness)

sole change(s) in SAs indicates (x̆, a) and (x̆, ã) are similar enough

Similarity with group fairness measures
is calculated over a group of instances (like one dataset or a data distribution)

indicates the discrimination level from a statistical/demographic perspective

—consistent with the idea of the latter

can be computed in the same way except that you don’t have to

L′
bias(f ) = |E(x,y)∼D|a=1[`bias(f, x)] − E(x,y)∼D|a=0[`bias(f, x)]| (2)

Bounds Regarding Fairness forWeighted Vote

tandem fairness quality of two hypotheses f (·) and f ′(·)
`bias(f, f ′, x)= I

( (
f (x̆, a) 6=f (x̆, ã)

)︸ ︷︷ ︸
discriminative decision in f

∧
(
f ′(x̆, a) 6=f ′(x̆, ã)

)︸ ︷︷ ︸
discriminative decision in f ′

)
(3)

ρ-weighted majority vote (as the ensemble combination)

wvρ(x) = argmaxy∈Y Ef∼ρ[I(f (x) = y)]
its fairness quality `bias(wvρ, x)= I(wvρ(x̆, a) 6=wvρ(x̆, ã))
for brevity, E(x,y)∼D[·] and Ef∼ρ[·] may be abbreviated as ED[·] and Eρ[·]

If the weighted vote makes a discriminative decision, then at least a ρ-weighted
half of the classifiers have made a discriminative decision and, therefore,

`bias(wvρ, x) 6 I(Eρ[I(f (x̆, a) 6= f (x̆, ã))] > 0.5)

Oracle bounds regarding fairness for weighted vote

Theorem 1. First-order oracle bound

Lbias(wvρ) 6 2Eρ[Lbias(f )] .
Lemma 1. In multi-class classification,

ED[Eρ[`bias(f, x)]2] = Eρ2[Lbias(f, f ′)] .
Theorem 2. Second-order oracle bound

In multi-class classification,

Lbias(wvρ) 6 4Eρ2[Lbias(f, f ′)] .
Theorem 3. C-tandem oracle bound

If Eρ[Lbias(f )] < 1/2 , then

Lbias(wvρ) 6
Eρ2[Lbias(f, f ′)] − Eρ[Lbias(f )]2

Eρ2[Lbias(f, f ′)] − Eρ[Lbias(f )] + 1
4
.

A prominent difference between our work and the work of Masegosa et al. is

that they investigate the expected risk or accuracy rather than fairness quality.

In other words, their bounds are based on the 0/1 loss `err(f, x)= I(f (x) 6=y),
while ours are built upon `bias(f, x) in (1a).

PAC bounds regarding fairness for the weighted vote

Theorem 4. For any δ ∈ (0, 1), with probability at least (1−δ) over a random
draw of S with a size of n, for a single hypothesis f (·),

Lbias(f ) 6 L̂bias(f, S) +
√

1
2n ln 1

δ . (4)

Theorem 5. For any δ ∈ (0, 1), with probability at least (1 − δ) over a random
draw of S with a size of n, for all distributions ρ on F ,

Lbias(wvρ) 6 L̂bias(wvρ) +
√

1
2n log |F|

δ . (5)

Generalisation bounds in (4) and (5) are derived from Hoeffding’s inequality

Empirical Results
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Figure 1. Comparison of the proposed DR with

three group fairness measures.
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Figure 2. Correlation for generalisation

bounds.
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Figure 3. Correlation for oracle bounds.
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